GAIN ENHANCEMENT AND RIPPLE MINIMIZATION of SPLIT SOURCE INVERTER
DOI:
https://doi.org/10.59277/RRST-EE.2025.1.14Keywords:
Split source inverter (SSI), Network parameters, Gain, RippleAbstract
Numerous DC–AC inverters have recently been created for solar systems. The split source inverter (SSI) is gaining popularity among them because of its one-stage functioning. This paper presents a modification of SSI's conventional configuration (CC) into a unidirectional DC-AC configuration for better efficiency, total harmonic distortion (THD), inductor current ripple, and capacitor voltage ripple. Different control strategies have been implemented to achieve higher gain and reduced ripple and filter requirements. The MATLAB/Simulink environment is utilized for the simulation study, and the modified topology's performance is compared with the CC-SSI. This paper proposes optimizing SSI's inductance and capacitance network parameters to enhance gain and minimize ripple using an artificial neural network model in MATLAB. The hardware prototype is built, and the simulation results are validated.
References
(1) M.H. Rashid, Power Electronics Handbook: Devices, Circuits, and Applications, Elsevier, 3rd ed. (2011).
(2) F.Z. Peng, Z-source inverter, IEEE Trans. Ind. Appl., 39, 2, pp. 504–510 (2003).
(3) M. Murali, P. Deshpande, B. Virupurwala, P. Bhavsar, Simulation and fabrication of single phase Z-source inverter for resistive load, U.P.B. Sci. Bull., Series C, 78, 1 (2016).
(4) J. Anderson, F. Peng, A class of quasi-Z-source inverters. In Proc. IEEE Ind. Appl. Soc. Meeting, pp. 1–7 (2008).
(5) L.B. Ge, Y. Abu-Rub, R.S. Balog, F.Z. Peng, H. Sun, X. Li, An active filter method to eliminate dc-side low-frequency power for a single-phase quasi-Z-source inverter, IEEE Trans. Ind. Electron., 8, pp. 4838–4848 (2016).
(6) S. Devi, R. Seyezhai, Impedance source inverter topologies for photovoltaic applications - a review, International Journal of Electrical Engineering and Technology (IJEET), 12, 11, pp. 73–85 (2021).
(7) M.-A. Ilie, D. Floricău, Grid-connected photovoltaic systems with multilevel converters – modeling and analysis, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 1, pp. 77–83 (2023).
(8) D. Beriber, A. Talha, A. Kouzou, A. Guichi, F. Bouchafaa, Multilevel inverter for grid-connected photovoltaic systems, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 2, pp. 105–110 (2022).
(9) A. Abdelhakim, P. Mattavelli, G. Spiazzi, Three-phase split-source inverter (SSI): Analysis and modulation, IEEE Trans. Power Electron., 31, 11, pp. 7451–7461 (2016).
(10) S.S. Lee, A.S.T. Tan, D. Ishak, R. Mohd-Mokhtar, Single-phase simplified split-source inverter (S3I) for Boost DC–AC power conversion, IEEE Trans. Ind. Electron., 66, 10, pp. 7643–7652 (2019).
(11) P. Davari, F. Blaabjerg, A. Abdelhakim, P. Mattavelli, Performance evaluation of the single-phase split-source inverter using an alternative DC–AC configuration, IEEE Trans. Ind. Electron., 65, 1 (2018).
(12) O.G. Londhe, S.L. Shaikh, Analysis of the single-phase split-source inverter by using different DC AC topology, IJERT, 9 (2020).
(13) S.S. Harshad, S. Devi, R. Seyezhai, N. Harish, R. Bharath Vishal, V. Barath, Design and analysis of split-source inverter for photovoltaic systems, In IoT and Analytics in Renewable Energy Systems, CRC Press, 1, pp. 1–12 (2023).
(14) U. Devaraj, S. Ramalingam, D. Sambasivam, Evaluation of modulation strategies for single-phase quasi-Z-source inverter, J. Inst. Eng. India Ser. B, The Institute of Engineers (India) (2018).
(15) D. Umarani, R. Seyezhai, Investigation of quasi Z-source cascaded multilevel inverter for PV system with maximum power point tracking, Applied Mechanics and Materials, 622, pp. 105–110 (2014).
(16) J.I.J. Kumar, C. Sajeesh, Design and implementation of modified split source inverter with quasi sinusoidal PWM technique for stand-alone system, International Journal of Engineering Research & Technology (IJERT), 9, 1 (2020).
(17) S.E. De León-Aldaco, H. Calleja, J. Aguayo Alquicira, Metaheuristic optimization methods applied to power converters: A review, IEEE Trans. Power Electron., 30, 12, pp. 6791–6803 (2015).
(18) X. Li, X. Zhang, F. Lin, F. Blaabjerg, Artificial-Intelligence-Based Design for Circuit Parameters of Power Converters, IEEE Trans. Ind. Electron, 69, 11, pp. 11144–11155 (2022).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.