DYNAMIC RELAXATION IN THE ITERATIVE METHODS FOR SOLVING NONLINEAR THREE-PHASE CIRCUITS
DOI:
https://doi.org/10.59277/RRST-EE.2023.3.7Keywords:
Nonlinear three-phase circuits, Picard-Banach iterative solution, Hănțilă method, Convergence acceleration, Dynamic overrelaxationAbstract
The Hănțilă method has proven its effectiveness in solving non-linear three-phase circuits. It is the only effective method for analyzing non-linear three-phase circuits containing machines with different sequence reactances. Since solving a system of equations is unnecessary, the computational effort is reduced, and a large number of harmonics can be considered. The convergence of the method is certain - demonstrated mathematically and allows the use of overrelaxation. To develop the method, we analyze the efficiency of computing a dynamic overrelaxation factor for accelerating the computational algorithm.
References
(1) B. Ramachandran, N.R. Prabha, M. Jawahar. An ultra-capacitor integrated dynamic voltage restorer for power quality enhancement in a three-phase distribution system using an adaptive neuro-fuzzy interference system controller, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 67, 4, pp. 383–388 (2022).
(2) O. Abdessemad, A.L. Nemmour, L. Louze, A novel control scheme implementation for a self-excited asynchronous generator, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 67, 4, pp. 371–376 (2022).
(3) V. Rathore, K.B. Yadav, Experimental analysis of multilevel inverter fed six-phase induction motor for high power applications, Rev. Roum. Sci. Techn. Électrotechn. et Énerg. 67, 4, pp. 389–394 (2022).
(4) I.F. Hănțilă, A method for solving nonlinear resistive networks, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 24, pp. 217–226 (1979).
(5) I.F. Hănțilă, G. Preda, M. Vasiliu, Polarization method for static fields, IEEE Transactions on Magnetics, 36, 4, pp. 672–675 (2000).
(6) G.M. Vasilescu, M. Maricaru, An efficient procedure for solving non-linear problems in electrical engineering: Hănțilă method, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 64, pp. 187–194 (2019).
(7) I.F. Hănțilă, C. Tufan, M.O. Popescu, M. Maricaru, "Dynamic" overrelaxation in iterative methods for solving nonlinear problems in electromagnetism (in Romanian) – Conferința Internațională Zilele Academiei de Științe Tehnice din România (ASTR), Ediția a XVII-a, Petroșani, 6–7 Octombrie 2022.
(8) P.C. Andrei, M.E. Marin, S. Marinescu, C.I. Grumeza, M. Maricaru, Assessment of static BH characteristics of electrical sheets using a dc measuring set-up, 16th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, pp. 1–4 (2021).
(9) M. Codrean, M. Codrean, M.C. Novac, O.-C. Novac, C. Gordan, V.I. Farcas, Analyzing the process of tempering a semifinished product using the FLUX2D and FEMM software, 2019 15th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, pp. 229–232 (2019).
(10) M.E. Marin, V. Manescu-Paltanea, G. Paltanea, P.C. Andrei, C. Grumeza, I.F. Hantila, Hysteresis cycle measurements using an innovative laboratory equipment, International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, pp. 1–5 (2020).
(11. G. Paltanea et al., Numerical analysis of a free rare-Earth PMaSynRM for light electric vehicle, International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, pp. 1–5 (2021).
(12. I.F. Hănțilă, M. Maricaru, R.M. Ciuceanu, L. Corlan, Harmonic analysis of circuits with nonlinear resistive elements, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 57, pp. 333–340 (2012).
(13. G.M. Vasilescu, I.F. Hănțilă, M. Maricaru, I. Bârsan, V. Stanciu, A new method for solving the periodic steady state of nonlinear circuits, Rev. Roum. Sci. Techn. Électrotechn. et Énerg, 59, 4, pp. 339–349 (2014).
(14. I.F. Hănțilă, F. Constantinescu, A.G. Gheorghe, M. Niţescu, M. Maricaru, A new algorithm for frequency domain analysis of nonlinear circuits, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 54, 1, pp. 57–66 (2009).
(15) I.F. Hănțilă, M. Maricaru, F. Constantinescu, R.M. Ciuceanu, A new method for time domain computation of the steady state in nonlinear circuits, IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS) (2011).
(16) I.F. Hănțilă, M. Maricaru, M. Stănculescu, G.M. Vasilescu, Method for analyzing three-phase networks with nonlinear resistive elements, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 64, pp. 103–106 (2019).
(17) C. Tufan, I.V. Nemoianu, Method for the analysis of three-phase networks containing nonlinear circuit elements in view of an efficient power flow computation, Electronics, 10, 2710 (2021).
(18) C. Tufan, I.V. Nemoianu, M. Maricaru, M. Stanculescu, M.E. Marin, Efficient method of harmonic analysis of three-phase circuits with nonlinear controlled switching elements, Rev. Roum. Sci. Techn. Électrotechn. et Énerg, 67, 1, pp. 47–54 (2022).
(19) C. Tufan, M. Maricaru, I.V. Nemoianu, Procedures for accelerating the convergence of the method Hănțilă for solving three-phase circuits with nonlinear elements – part I, Rev. Roum. Sci. Techn. Électrotechn. et Énerg, 67, 3, pp. 293–300, (2022).
(20) C. Tufan, M. Maricaru, I.V. Nemoianu, Procedures for accelerating the convergence of the method Hănțilă for solving three-phase circuits with nonlinear elements – part II, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 67, 4, pp. 395–401 (2022).
(21) ***Mathworks https://es.mathworks.com/help/physmod/sps/ref/
thyristorpiecewiselinear.html accessed: May 12, 2022].
(22) J.W. Eaton, https://www.gnu.org/software/octave/ [accessed: May 12, 2022]
(23) ***Mathworks, https://www.mathworks.com/help/matlab/ref/
fzero.html [accessed: January 10, 2023].
Downloads
Published
Issue
Section
License
Copyright (c) 2023 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.