MAGNETIC FIELD CONTROL IN AN ANALYTIC PLATFORM FOR ASSESSMENT OF PATHOGENIC BACTERIA

Authors

  • ALIN-ALEXANDRU DOBRE Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, Romania Author
  • ALINA-MONICA ILIE-SANDOIU Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, Romania Author
  • ALEXANDRU-MIHAIL MOREGA Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, Romania Author
  • EUGEN GHEORGHIU International Centre of Biodynamics, Bucharest, Romania Author

DOI:

https://doi.org/10.59277/RRST-EE.2023.3.12

Keywords:

Magnetic actuation, Pathogen detection, Magnetic field, Numerical simulation

Abstract

The paper presents a conceptual, analytical platform with various pathogen detection applications, based on a hybrid magnetic field source, comprised of permanent magnets and solenoid coils fixed on the same magnetic yoke that acts as a magnetic flux concentrator. The magnetic field creates magnetization forces that guide functionalized paramagnetic microparticles through the volume of an analyte sample, in order to capture targeted pathogens. The presence of bacteria is sensed with an additional electrical impedance spectroscopy (EIS) module attached to the system, at high-frequency electrical fields. The magnetic field control is studied using mathematical modeling and numerical simulation in several geometry setups, coil excitation, and remanent flux density values.

References

(1) Y. Zhu, Y. Zhang, X. Yang, S. Tao, M. Chen, W. Shangguan, Operando investigation of particle re-entrainment mechanism in electrostatic capture process on the lab-on-a-chip, Journal of environmental sciences, 136, pp. 337–347 (2024).

(2) L. Steigmann, S. Maekawa, C. Sima, S. Travan, C.-W. Wang, W.V. Giannobile, Biosensor and Lab-on-a-chip Biomarker-identifying Technologies for Oral and Periodontal Diseases, Front. Pharmacol. 11 p. 1663 (2020).

(3) Y. Ai, F. Zhang, C. Wang, R. Xie, Q. Liang, Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test, Trends in Analytical Chemistry, 117, pp. 215-230 (2019).

(4) A. M. Foudeh, T. Fatanat Didar, T. Veres and M. Tabrizian, Lab Chip, 12, pp. 3249–3266 (2012).

(5) H.S. Magar, M.N. Abbas, M.B. Ali, M.A. Ahmed, Picomolar-sensitive impedimetric sensor for salivary calcium analysis at POC based on SAM of Schiff base–modified gold electrode. J. Solid State Electrochem., 24, pp. 723–737 (2020).

(6) S. David, C. Polonschii, M. Gheorghiu, D. Bratu, A. Dobre, E. Gheorghiu, Assessment of pathogenic bacteria using periodic actuation, Lab on a Chip, 13, p. 3192 (2013).

(7) E. Gheorghiu, Detection of pathogenic bacteria by magneto-immunoassays: a review. The Journal of Biomedical Research. 35. 1. 10.7555/JBR.34.20200123 (2021).

(8) F. Munteanu, A.M. Titoiu, J. Marty, A. Vasilescu, Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes. Sensors. 18. 901. 10.3390/s18030901 (2018).

(9) P.H. Lu, Y.D. Ma, C.Y. Fu, G.B. Lee, A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces. Lab on a Chip, 4, pp.789–797 (2020).

(10) A.F. Blanco, M.H. Perez, Y.M. Trigos, J. Garcia-Hernandez, Development of Optical Label-Free Biosensor Method in Detection of Listeria monocytogenes from Food. Sensors. 23. 5570. 10.3390/s23125570 (2023).

(11) R. Radhakrishnan, P. Poltronieri, Fluorescence-Free Biosensor Methods in Detection of Food Pathogens with a Special Focus on Listeria monocytogenes. Biosensors, MDPI, ISSN 2079-6374;. 7. 63. 10.3390/bios7040063 (2017)

(12) J. Leva-Bueno, S.A. Peyman, P.A. Millner, A review on impedimetric immunosensors for pathogen and biomarker detection, Med Microbiol Immunol, 209, 3, pp. 343–362 (2020).

(13) J. Vlcek, Pištora, M. Lesnák, Design of plasmonic-waveguiding structures for sensor applications, Nanomaterials, 9, 9, pp. 1227 (2019).

(14) E. Gheorghiu, A renewed challenge to electrical bioimpedance: rapid assessment of pathogenic bacteria, J. Electr. Bioimpedance, 14, 1, pp. 1-2 (Mar. 2023).

(15) E. Gheorghiu, RO Patent Application A00136/2011 (2011).

(16) A.M. Morega, M. Morega, A.A. Dobre, Computational Modeling in Biomedical Engineering and Medical Physics, Chapters 6 and 8 Elsevier, (2020).

(17) A.B. Seabra et al., Chapter 24, Antimicrobial applications of superparamagnetic iron oxide nanoparticles: perspectives and challenges, in Nanostructures for Antimicrobial Therapy, ed. A. A. Ficai, A.M. Grumezescu, Micro and Nano Technologies, pp. 531-550 (2017).

(18) J. Dulińska-Litewka et al., Superparamagnetic iron oxide nanoparticles – current and prospective medical applications, Materials (Basel), 12, 4, pp. 617-642 (2019).

(19) S. Palanisamy Y.M. Wang, Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer, Dalton Transactions, 48, 26, pp. 9490-9515 (2019).

(20) C.M. Lundquist et al., Characterization of Free and Porous Silicon-Encapsulated Superparamagnetic Iron Oxide Nanoparticles as Platforms for the Development of Theranostic Vaccines, Med. Sci., 2, 1, pp. 51-69 (2014).

(21) ***ThermoFisher Invitrogen Dynabeads M-280 Streptavidin Certificate of Analysis, Quality Control Report, September 2023, https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2Fcertificate%2FVIL%2FCOA%2FCOA_60210_2812162_1.pdf.

(22) A.M. Morega, M.Morega, J.B. Dumitru, Magnetic field-flow interactions in a miniature electric power transformer with magnetic nanofluid core and solenoid type coils, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 58, 1, pp. 25–34 (2013).

(23) V. Paltanea, G. Paltanea, D. Popovici, Numerical approach for an application of magnetic drug targeting in cancer therapy, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 53, 2, pp. 137–146 (2008).

(24) R.M. Baerov, A.M. Morega, M. Morega, Analysis of magnetotherapy effects for post-traumatic recovery of limb fractures, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 65, 1-2, pp. 145–150 (2020).

Downloads

Published

12.10.2023

Issue

Section

Génie biomédical | Biomedical Engineering

How to Cite

MAGNETIC FIELD CONTROL IN AN ANALYTIC PLATFORM FOR ASSESSMENT OF PATHOGENIC BACTERIA. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(3), 317-322. https://doi.org/10.59277/RRST-EE.2023.3.12