A NEW HYBRID MODEL TO EVALUATE THE LOSS OF LIFE OF POWER TRANSFORMERS

Authors

  • BOGDAN LEU Transelectrica, Technical, Energy Efficiency and New Technologies Division, Romania Author
  • GEORGE SERIȚAN Faculty of Electrical Engineering, Politehnica University of Bucharest, Romania Author
  • BOGDAN ENACHE Faculty of Electrical Engineering, Politehnica University of Bucharest, Romania Author

DOI:

https://doi.org/10.59277/RRST-EE.2023.3.5

Keywords:

Loss of life, Aging, Transformers, Thermal model, Insulation resistance model

Abstract

Following the thermal model for assessing the degradation of transformer units, as advocated by IEEE and IEC standards, existing literature posits that the transformers do not exhibit significant aging at hot-spot temperatures below 90°C. Contrary to this prevailing understanding, the current study demonstrates that when using a model based on insulation resistance measurements, discernible aging of transformers occurs even at these lower hot-spot temperature thresholds. Consequently, this paper introduces a novel evaluative hybrid model for transformer degradation, designed to be applicable across the entire range of hot-spot operational temperatures.

References

(1) E. Cazacu, L. Petrescu, On-site derating of in-service power distribution transformers supplying nonlinear loads, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 59, 3, pp. 259–268, Bucarest (2014).

(2) V. Notingher, C. Stancu, I. Dragan, M.I. Bey, Calculation of the temperatures and lifetimes for distribution transformers, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 66, 4, pp. 275–284, Bucarest (2021).

(3) R. Chenier, J. Aubin, Economic Benefit and Risk Evaluation of Power Transformer Overloading, IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194) (2001).

(4) K. Najdenkoski, G. Rafajlovski, Thermal Aging of Distribution Transformers According to IEEE and IEC Standards, IEEE Power Engineering Society General Meeting (2007).

(5) D. Susa, Dynamic thermal modelling of power transformers, PhD Thesis (2005).

(6) A. Elmoudi, M. Lehtonen, H. Nordman, Effect of harmonics on transformers loss of life, Conference Record of the IEEE International Symposium on Electrical Insulation (2006).

(7) S. Tenbohlen, T. Stirl, M. Stach, Assessment of overload capacity of power transformers by on-line monitoring systems, IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194) (2001).

(8) M.T. Askari, M.Z. Kadir, S. Bolandifar, Loss of life of mineral oil immersed transformers (2015).

(9) T. Chiulan, B. Pantelimon, Ways for mitigating the transformer unit operation in excessive working conditions, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 53, 1, pp. 51–58, Bucarest (2008).

(10) M. Humayun; M. Ali, A. Safdarian, M.Z. Degefa, M. Lehtonen, Optimal use of demand response for lifesaving and efficient capacity utilization of power transformers during contingencies, IEEE Power & Energy Society General Meeting (2015).

(11) B. Leu, G. Serițan, B. Enache, G. Tănăsescu, R. Porumb, I. Vilciu, Power transformers loss of life evaluation using winding insulation resistance calculation Model, 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), (2023).

(12) ***IEEE C57.91, Guide for loading mineral-oil-immersed transformers and step-voltage regulators, IEEE Power and Energy Society (2011).

(13) ***IEC 60076-7, Power Transformers – Part 7: Loading guide for mineral-oil-immersed power transformers, IEC International Standard, (2018).

(14) ***Simtech International and Politehnica University of Bucharest, Method and equipment for determining the remaining life of insulation systems of power transformers, EDVTP Research Project (2016-2018) (UEFISCD Contract No. 6PTE/2016) – Stage 3, Bucharest (2018).

(15) P.V. Notingher, G. Tănăsescu, Determination of estimated, consumed and remaining lifetimes of paper-oil transformers insulation based on winding insulation resistance, IEEE International Conference on High Voltage Engineering and Application (ICHVE) (2018).

(16) T. Chiulan, B. Pantelimon, Experimental study on the large power transformer unit temperature variation, U.P.B. Sci. Bull., Series C, 71, 4, (2009).

(17) M.L. Hasse Nordman, Thermal overload tests on a 400-MVA power transformer with a special 2.5-p.u. short time loading capability, IEEE Transactions on Power Delivery, 18, 1, pp. 107-112, (2003).

(18) ***CIGRE Study Committee 12-106, Life assessment of power transformers to prepare a rehabilitation based on a technical-economical analysis, CIGRE Session (2002).

(19) ***CNTEE Transelectrica SA, https://www.transelectrica.ro (2023).

(20) A.C. Adewole, R. Tzoneva, A. Apostolov, Real-time underload tap-changer control based on synchrophasor measurements, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg., 61, 4, pp. 343–348, Bucarest (2016).

(21) B.C. Cronk, How to use SPSS®: a step-by-step guide to analysis and interpretation, 11th Edition, Routledge (2019).

(22) H. Schiefer, F. Schiefer, Statistics for Engineers, Springer (2021).

Downloads

Published

12.10.2023

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

A NEW HYBRID MODEL TO EVALUATE THE LOSS OF LIFE OF POWER TRANSFORMERS. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(3), 277-282. https://doi.org/10.59277/RRST-EE.2023.3.5