• MUTHUMANICKAM BHAGAVATHI PRIYA Dr. Mahalingam College of Engineering and Technology, Pollachi India Author
  • CHANDRAN RAMAKRISHNAN SNS College of Technology, Coimbatore, 641035, India Author
  • SUBBURATHINAM KARTHIK SNS College of Technology, Coimbatore, 641035, India Author




Tricuspid Regurgitation, Deep learning, Color-Level Co-occurrence Matrix, Grey-Level Co-occurrence Matrix, Independent component analysis


Tricuspid regurgitation (TR) is a condition in which the valve between the right atrium and right ventricle does not close properly. Therefore, blood leaks backward into the upper right chamber. Most commonly, tricuspid regurgitation is caused by an enlarged right ventricle. In this paper, a novel deep learning technique called Tricuspid regurgitation identification in the fetal heart (TRI-FH) approach has been proposed, for identifying TR in the early stages. The gathered 3D-echo images are pre-processed to improve the quality of the images. The feature extraction techniques namely color-level co-occurrence matrix (CLCM) and grey-level co-occurrence matrix (GLCM) are applied on both RGB and grey images. The extracted features are extracted using the wrapper method and the unsupervised dimension reduction technique namely independent component analysis (ICA) is used to reduce the dimension of extracted features. Afterward, the deep learning-based Ghost network is used for classifying normal, Mild TR, and severe TR cases. The classified TR cases are fed to the segmentation phase for segmenting the affected valve of the fetus. The experimental TRI-FH approach achieves a total accuracy of 98.07 %. As compared to existing techniques, the proposed TRI-FH method shows higher performance in terms of accuracy, precision, recall, specificity, and F1 score. The proposed TRI-FH model enhances the total accuracy by 95.64 %, 97.82 %, 93.21 %, and 95.67 % better than ResNet, DenseNet, LinkNet, and U-Net respectively.


(1) F. Barbieri, M. Schröder, N. Beyhoff, U. Landmesser, M. Reinthaler, M. Kasner, Percutaneous edge-to-edge tricuspid valve repair in a patient with Cor Triatriatum dexter: a case report, Journal of cardiovascular development and disease, 8, 9, pp. 111 (2021).

(2) C.H. Lee, D.W. Laurence, C.J. Ross, K.E. Kramer, A.R. Babu, E.L. Johnson, M.C. Hsu, A. Aggarwal, A. Mir, H.M. Burkhart, R.A. Towner, Mechanics of the tricuspid valve—From clinical diagnosis/treatment, in-vivo and in-vitro investigations, to patient-specific biomechanical modelling, Bioeng., 6, 2, pp. 47 (2019).

(3) E. Dzilic, T. Guenther, A. Bouziani, B. Voss, S. Voss, K. Vitanova, M. Krane, R. Lange, results after repair of functional tricuspid regurgitation with a three-dimensional annuloplasty ring, J. Clin. Med, 10, 21, pp. 5080 (2021).

(4) D. Munteanu, C. Bejan, N. Munteanu, C. Zamfir, M.Vasić, S.M. Petrea, D. Cristea, Deep-learning-based system for assisting people with Alzheimer’s disease, Electronics, 11, 19, pp. 3229 (2022).

(5) H. Gupta, P. Kumar, S. Saurabh, S.K. Mishra, B. Appasani, A. Pati, C. Ravariu, and A. Srinivasulu, Category boosting machine learning algorithm for breast cancer prediction, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 3, pp. 201-206 (2021).

(6) Z. Rguibi, A. Hajami, D. Zitouni, A. Elqaraoui, A. Bedraoui, Cxai: explaining convolutional neural networks for medical imaging diagnostic, Electronics, 11, 11, pp. 1775 (2022).

(7) A. Topor, D. Ulieru, C. Ravariu, F. Babarada, Development of a new one-eye implant by 3D bioprinting technique, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 2, pp. 247-250 (2023).

(8) R.T. Hahn, J.D. Thomas, O.K. Khalique, J.L. Cavalcante, F. Praz, W.A. Zoghbi, Imaging assessment of tricuspid regurgitation severity, JACC: Cardiovasc. Imaging, 12, 3, pp. 469-490 (2019).

(9) L.P. Badano, R. Hahn, H. Rodríguez-Zanella, D. Araiza Garaygordobil, R.C. Ochoa-Jimenez, D. Muraru, Morphological assessment of the tricuspid apparatus and grading regurgitation severity in patients with functional tricuspid regurgitation: thinking outside the box, JACC: Cardiovasc. Imaging, 12, 4, pp. 652-664 (2019).

(10) Q.W. Jin, A.B.M. Ghazi, J. Kolanthaivelu, S.A. Yahaya, Novel treatment of atrial functional tricuspid regurgitation using transcatheter bicaval valve implantation (TricValve), Asia Intervention, 8, 2, pp. 138 (2022).

(11) S. Gogoneaţă, C. Mărculescu, A.M. Morega, Characterization of electrical properties of 3d printed biosensors with various electrode geometries, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 2, pp. 241-246 (2023).

(12) M. Penso, M. Pepi, L. Fusini, M. Muratori, C. Cefalù, V. Mantegazza, P. Gripari, S.G. Ali, F. Fabbiocchi, A.L. Bartorelli, E.G. Caiani, Predicting long-term mortality in TAVI patients using machine learning techniques. Journal of cardiovascular development and disease, 8, 4, pp. 44 (2021).

(13) G. Italiano, L. Fusini, V. Mantegazza, G. Tamborini, M. Muratori, S. Ghulam Ali, M. Penso, A. Garlaschè, P. Gripari, M. Pepi, Novelties in 3D transthoracic echocardiography, J. Clin. Med. Res, 10, 3, pp. 408, (2021).

(14) M. Glavaški, A. Preveden, Đ. Jakovljević, N. Filipović, L. Velicki, Subtypes and Mechanisms of Hypertrophic Cardiomyopathy Proposed by Machine Learning Algorithms. Life, 12, 10, pp. 1566, (2022).

(15) C. Chao, H.L. Wu, A. Seri, A. Shanbhag, C. Rayfield, Y. Wang, S. Smith, F.D. Fortuin, J. Sweeney, M.F. Eleid, M. Alkhouli, Unsupervised machine learning clustering identifies phenotypes of optimal candidates in mitraclip patients, Circ., 144 (Suppl_1), A10680-A10680 (2021).

(16) H. Nisar, D. Fakim, D. Bainbridge, E. Chen, T. Peters, 3D localization of vena contracts using Doppler ICE imaging in tricuspid valve interventions, International J. Comput. Assisted Radiol. Surg., 1-9 (2022).

(17) M. Komatsu, A. Sakai, R. Komatsu, R. Matsuoka, S. Yasutomi, K. Shozu, A. Dozen, H. Machino, H. Hidaka, T. Arakaki, K. Asada, Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning, Appl. Sci, 11(1), 371.

(18) Wahlang, A.K. Maji, G. Saha, P. Chakrabarti, M. Jasinski, Z. Leonowicz, E. Jasinska, Deep learning methods for classification of certain abnormalities in echocardiography. Electron., 10, 4, pp. 495 (2021).

(19) S. Sengan, A. Mehbodniya, S. Bhatia, S.S. Saranya, M. Alharbi, S. Basheer, V. Subramaniyaswamy, Echocardiographic image segmentation for diagnosing fetal cardiac rhabdomyoma during pregnancy using deep learning, IEEE Access, 10, 114077-114091 (2022).

(20) Wahlang, S.M. Hassan, A.K. Maji, G. Saha, M. Jasinski, Z. Leonowicz, E. Jasinska, Classification of valvular regurgitation using echocardiography, Appl. Sci., 12, 20, pp. 10461 (2022).

(21) N. Bouchahda, R. Ayari, R. Wei, W. Majewski, N. Bouchahda, Study of cardiac fluid dynamics in the right side of the heart with AI PIV, 75th Annual Meeting of the APS Division of Fluid Dynamics, APS DFD 2022 Indianapolis, Indiana, USA (2022).

(22) N. Khatib, A. Gover, R. Beloosesky, Y.Ginsberg, Weiner, Z., Eigenberg, S. and Bronshtein, M.: Early prenatal diagnosis of tricuspid valve dysplasia, The Journal of Maternal-Fetal & Neonatal Medicine, 35, 2, pp. 410-413 (2022).

(23) D.R. Florescu, D. Muraru, V. Volpato, M. Gavazzoni, S. Caravita, M.Tomaselli, P. Ciampi, C. Florescu, T.A. Bălșeanu, G. Parati, L.P. Badano, Atrial functional tricuspid regurgitation as a distinct pathophysiological and clinical entity: no idiopathic tricuspid regurgitation anymore. J. Clin. Med., 11, 2, pp. 382 (2022).

(24) J.J. Silbiger, Atrial functional tricuspid regurgitation: an underappreciated cause of secondary tricuspid regurgitation. Echocardiography, 36, 5, pp. 954-957 (2019).

(25) G. Zamzmi, L.Y. Hsu, W. Li, V. Sachdev, S. Antani, Echo Doppler flow classification and goodness assessment with convolutional neural networks, 18th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1744-1749 (2019).

(26) M. Majmundar, A. Kumar, R. Doshi, P. Shah, S. Arora, M. Shariff, D. Adalja, F. Visco, H. Amin, S. Vallabhajosyula, N. Gullapalli, Meta-analysis of transcatheter aortic valve implantation in patients with stenotic bicuspid versus tricuspid aortic valve. American Journal of Cardiology, 145, pp. 102-110 (2021).






Génie biomédical | Biomedical Engineering

How to Cite