PRACTICAL REALIZATION OF A WATER PURIFICATION SYSTEM USING THE SOLAR PHOTOVOLTAIC SOURCE WITH MONITORING OF THE MAXIMUM POWER POINT
DOI:
https://doi.org/10.59277/RRST-EE.2023.68.1.18Keywords:
Reverse osmosis, Photovoltaic, Maximum power point tracking, Chopper, Active and reactive power control, ControlAbstract
This article is devoted to realizing an osmosis unit powered by a photovoltaic generator. The idea was born to meet a real need that our country is experiencing. Indeed, drinking water is scarce in rural areas, and the absence of an electricity network offers no solution to purify it. To support our work, we present the assembly adopted for the realization of this osmosis unit, the theoretical study of its solar power supply, and the control for operation at the point of optimal power. The test bench produced is finally presented with the experimental results obtained.
References
(1) J. Song, M. Yan, J. Ye, S. Zheng, L.Y. Ee, Z. Wang, J. Li, M. Huang, Research progress in external field intensification of forward osmosis process for water treatment: A critical review, Water Research, 222, (2022).
(2) R. Saeed, A.H. Konsowa, M.S. Shalaby, M.S. Mansour, M.G. Eloffy, Optimization of Integrated Forward – Reverse Osmosis Desalination Processes for Brackish Water, Alexandria Engineering J., (2022).
(3) X. Zhang, J. Jiang, F. Yuan, W. Song, J. Li, D. Xing, L. Zhao, W. Dong, X. Pan, X. Gao, Estimation of water footprint in seawater desalination with reverse osmosis process, Environmental Research, 204, D (2022).
(4) N. Kacimi , A. Idir, S. Grouni, M.S. Boucherit, New combined method for tracking the global maximum power point of photovoltaic systems, Rev. Roum. Sci. Techn.–Électrotechn. Et Énerg., 67, 3, pp. 349–354, (2022).
(5) M.A. Ozcelik, A.S. Yilmaz, Modification of the incremental conductance algorithm in grid connected photovoltaic systems, Rev. Roum. Sci. Techn.–Électrotechn. Et Énerg. 61, 2, pp. 164–168 (2016).
(6) P.S. Sikder, N. Pal, Incremental conductance based maximum power point tracking controller using different buck-boost converter for solar photovoltaic system, Rev. Roum. Sci. Techn.–Électrotechn. Et Énerg. 62, 3, pp. 269–275 (2017).
(7) A. Laib, F. Krim, B. Talbi, H. Feroura, A. Belaout, Hardware implementation of fuzzy maximum power point tracking through sliding mode current control for photovoltaic systems, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 66, 2, pp. 91–96, (2021).
(8) R. Ramabadran, M.S.I. Sundaram, Dichotomous search based algorithm for tracking global peak in partial shaded photovoltaic array, Rev. Roum. Sci. Techn.–Électrotechnique et Énergétique, 65, 3–4, pp. 211–215 (2020).
(9) M.H. Zerhouni, F.Z. Zerhouni, M. Zegrar, A.Tilmatine, Photovoltaic solar array: Modeling and output power optimization, Environmental Progress & Sustainable Energy 35, 5, 1529-1536 (2016).
(10) T.H. Van, T.L. Van, T.M.N. Thi, M.Q. Duong, G.N. Sava, Improving the output of dc-dc converter by phase shift full bridge applied to renewable energy, Rev. Roum. Sci. Techn.–Électrotechn. etÉnerg., 66, 3, pp. 175–180 (2021).
(11) R. Thankakan, E.R.S. Nadar, A novel dc-dc converter fed by pv source employing improved incremental conductance algorithm under partial shadow conditions, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. , 67, 3, pp. 145-150, (2022).
(12) F.Z. Zerhouni, M.H. Zerhouni, M. Zegrar, M.T. Benmessaoud, A.B. Stambouli, A. Midoun, Proposed methods to increase the output efficiency of a photovoltaic (PV) system, Acta Polytechnica Hungarica 7, 2, pp. 56-70 (2010).
(13) F.Z. Zerhouni, M. Telidjane, Branchement direct d’une pile à combustible à membrane échangeuse de protons à une charge et modelisation, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg.,60, 4, pp. 387–396 (2015).