GRID-CONNECTED PHOTOVOLTAIC SYSTEMS WITH MULTILEVEL CONVERTERS – MODELING AND ANALYSIS

Authors

  • MIHĂIȚĂ-ALEXANDRU ILIE Electrical Engineering Faculty, University Politehnica of Bucharest, Bucharest, Romania Author
  • DAN FLORICĂU Electrical Engineering Faculty, University Politehnica of Bucharest, Bucharest, Romania Author

DOI:

https://doi.org/10.59277/RRST-EE.2023.68.1.13

Keywords:

Grid-connected, Photovoltaic system, Three-level active neutral point clamped, Optimal control, Three-level dc-dc boost converter

Abstract

In this paper, a comparison between three double-stage grid-connection systems in central inverter configuration is presented. This configuration can be used to obtain a wide power range and is suitable for the connection to three-phase grids. In this case, the photovoltaic (PV) panels are connected to the inverter via a dc-dc converter to ensure an optimal dc voltage level. The focus is on the characteristics and properties of the used converter’s structures. All the design steps of a grid connection system are also presented. Both two-level (2L) and three-level (3L) voltage structures are implemented. At the end of the paper, a detailed analysis highlights the advantages and disadvantages of the three photovoltaic systems connected to the grid.

References

(1) Y. Yang, K. Kim, F. Blaabjerg, A. Sangwongwanich, Advances in grid-connected photovoltaic power conversion systems, 1 ed. Duxford: Woodhead Publishing, 2018. pp. 15-43.

(2) Q. Peng, J. Fang, Y. Yang, F. Blaabjerg, A universal model for grid-connected converters reflecting power-internal voltage characteristics, IEEE 4th Southern Power Electronics Conference, pp. 1-7 (2018).

(3) Y. Huang, X. Zhai, J. Hu, D. Liu, C. Lin, Modeling and stability analysis of vsc internal voltage in dc-link voltage control timescale, IEEE Journal of Emerging and Selected Topics in Power Electronics, 6, 1, pp. 16-28 (2018).

(4) Y. Huang, X. Yuan, J. Hu, P. Zhou, Modeling of VSC connected to weak grid for stability analysis of dc-link voltage control, IEEE Journal of Emerging and Selected Topics in Power Electronics, 3, 4, pp. 1193-1204 (2015).

(5) A. Sangwongwanich, Y. Yang, F. Blaabjerg, Development of flexible active power control strategies for grid-connected photovoltaic inverters by modifying MPPT algorithms, IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, pp. 87-92 (2017).

(6) S. Kouro, J.I. Leon, D. Vinnikov, L.G. Franquelo, Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology, IEEE Industrial Electronics Magazine, 9, 1, pp. 47-61 (2015).

(7) D. Floricau, E. Floricau, M. Dumitrescu, Natural doubling of the apparent switching frequency using three-level ANPC converter, 2008 International School on Nonsinusoidal Currents and Compensation, pp. 1-6 (2008).

(8) D. Floricau, D. Olaru, E. Floricau, I. Popa, Loss balancing in three-level active-neutral-point-clamped converter, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 54, 3, pp. 281–290 (2009).

(9) A.K. Podder, N.K. Roy, H.R. Pota, MPPT methods for solar PV systems: a critical review based on tracking nature, IET Renew. Power Gener., 13, 10, pp. 1615–1632 (2019).

(10) A. Amine, A. Massoum, M. Chadli, Comparison study of two tracking methods for photovoltaic systems, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 60, 2, p. 205–214 (2015).

(11) F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems, IEEE Trans. on Industrial Electronics, 53, 5, pp. 1398-1409 (2016).

(12) Q. Peng, A. Sangwongwanich, Y. Yang, F. Blaabjerg, Grid-friendly power control for smart photovoltaic systems, Solar Energy, 210, pp. 115-127 (2020).

(13) A. Timbus, M. Liserre, R. Teodorescu, F. Blaabjerg, Synchronization methods for three-phase distributed power generation systems – An overview and evaluation, IEEE 36th Power Electronics Specialists Conference, pp. 2474-2481 (2005).

(14) P. Rodriguez, R. Teodorescu, I. Candela, A. V. Timbus, M. Liserre, F. Blaabjerg, New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions, in Proc. IEEE PESC, pp. 1–7 (2006).

(15) P. Rodriguez, J. Pou, J. Bergas, J.I. Candela, R.P. Burgos, D. Boroyevich, Decoupled double synchronous reference frame PLL for power converters control, IEEE Trans. on Power Electronics, 22, 2, pp. 584-592 (2007).

(16) J. Y. Lee, Y. P. Cho, H. S. Kim, J. H. Jung, Design methodology of passive damped LCL filter using current controller for grid-connected three-phase voltage-source inverters”, J. of Power Electronics, 18, 4, pp. 1178-1189 (2018).

(17) A. Julean et al., Active damping of LCL filter resonance in grid-connected applications, Master Thesis, Aalborg University (2009).

(18) S.V. Araujo, A. Engler, B. Sahan, F.L. M. Antunes, LCL filter design for grid-connected NPC inverters in offshore wind turbines, 7th International Conference on Power Electronics, pp. 1133-1138 (2007).

(19) D. Floricau, T. Tudorache, L. Kreindler, New boost-type PFC MF-Vienna PWM rectifiers with multiplied switching frequency, Advances in Electrical and Computer Engineering, 15, 4, pp. 81-86 (2015).

(20) M. Flitti, M-K. Fellah, M. Khatir, S-A. Zidi, M-F. Benkhoris, Control of back-to-back voltage source converter, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 57, 3, pp. 259–268 (2012).

(21) M. Liserre, F. Blaabjerg, S. Hansen, Design and control of an LCL-filter-based three-phase active rectifier, IEEE Trans. on Industry Applications, 41, 5, pp. 1281-1291 (2005).

(22) H. Chen, W. Lin, MPPT and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converters, IEEE Trans. on Power Electronics, 29, 1, pp. 29-35 (2014)

Downloads

Published

01.04.2023

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

GRID-CONNECTED PHOTOVOLTAIC SYSTEMS WITH MULTILEVEL CONVERTERS – MODELING AND ANALYSIS. (2023). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68(1), 77-83. https://doi.org/10.59277/RRST-EE.2023.68.1.13