ADVANCED NEUROLOGICAL IMAGING ANALYSIS USING DIFFUSION TENSOR TECHNIQUES AND DISTRIBUTED WEB SYSTEMS
DOI:
https://doi.org/10.59277/RRST-EE.2025.2.20Keywords:
Diffusion weighted imaging, Diffusion tensor imaging, Neurological diagnosis, Medical image analysis, Fractional anisotropy, Mean diffusivity, Distributed web systems, FSL software library, MRI image processing, Medical data sharing, Scalable computing, Brain connectivity analysisAbstract
Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are crucial in modern neurological diagnostics, enabling detailed analysis of brain structures and connectivity. This article presents a comprehensive approach to analysing MRI images using advanced tools such as the FSL software library. The proposed method leverages distributed web systems to enhance the scalability and accessibility of image processing and analysis across multiple medical facilities. Key steps, including noise reduction, artefact removal, and tensor reconstruction, are performed to improve diagnostic accuracy. Additionally, metrics such as fractional anisotropy (FA), mean diffusivity (MD), and axial diffusivity (AD) are evaluated to detect microstructural brain abnormalities. The integration of distributed web technologies facilitates real-time collaboration between specialists, accelerating diagnostic processes and enabling cross-hospital data sharing. This study highlights the potential of combining cutting-edge imaging techniques with scalable digital infrastructures to optimise medical decision-making and improve patient outcomes.
References
(1) H. Numamoto, K. Fujimoto, K.K. Miyake, Y. Fushimi, S. Okuchi, R. Imai, Y. Nakamoto, Evaluating reproducibility of the ADC and distortion in diffusion–weighted imaging (DWI) with reverse encoding distortion correction (RDC), Magnetic Resonance in Medical Sciences, 24, 1, pp. 66–77 (2025).
(2) F. Paolini, S. Marrone, G. Scalia, R.M. Gerardi, L. Bonosi, U.E. Benigno, M. Visocchi, Diffusion tensor imaging as neurologic predictor in patients affected by traumatic brain injury: Scoping review, Brain Sciences, 15, 1, p. 70 (2025).
(3) F. Tensaouti, G. Arribarat, B. Cabarrou, L. Pollidoro, N. Courbière, A. Sévely, A. Laprie, Measuring the impact of treatment on memory functions in pediatric posterior fossa tumor survivors using diffusion tensor imaging, Radiotherapy and Oncology, 202, 110599 (2025).
(4) C. Bilreiro, L. Andrade, R.M. Marques, C. Matos, Diffusion–weighted imaging for determining response to neoadjuvant therapy in pancreatic cancer: a systematic review and meta–analysis, European Radiology, 34, 5, pp. 3238–3248 (2024).
(5)W. van Hecke, L. Emsell, S. Sunaert, Diffusion Tensor Imaging: A Practical Handbook, 1, Springer, New York, NY (2016).
(6) P. Shobeiri, S.H. Shabanan, M. Haghshomar, et al., Cerebellar microstructural abnormalities in Obsessive–Compulsive Disorder (OCD): a systematic review of diffusion tensor imaging studies, The Cerebellum, 23, 2, pp. 778–801 (2024).
(7) X.V. To, A.Z. Mohamed, P. Cumming, F.A. Nasrallah, Diffusion tensor imaging and plasma immunological biomarker panel in a rat traumatic brain injury (TBI) model and in human clinical TBI, Frontiers in Immunology, 14, p. 1293471 (2024).
(8) S. Aja–Fernández, G. Vegas–Sánchez–Ferrero, Statistical Analysis of Noise in MRI, Springer International Publishing (2016).
(9) S. Flassbeck, J. Assländer, Minimization of eddy current artifacts in sequences with periodic dynamics, Magnetic Resonance in Medicine, 91, 3, pp. 1067–1074 (2024).
(10) U. Yarach, I. Chatnuntawech, C. Liao, S. Teerapittayanon, S.S. Iyer, T.H. Kim, K. Setsompop, Blip-up blip-down circular EPI (BUDA–cEPI) for distortion-free dMRI with rapid unrolled deep learning reconstruction, Magnetic Resonance Imaging, 115, 110277 (2025).
(11) A.E. Bower, J.W. Chung, R.G. Burciu, Mapping the aging brain: Insights into microstructural changes from free water–corrected fractional anisotropy, Neuroscience Letters, 138120 (2025).
(12) D.A. Lee, H.J. Lee, K.M. Park, Brain MRI detection of an abnormal peak width of skeletonized mean diffusivity in REM sleep behavior disorder, Journal of Neuroimaging, 35, 1, e70009 (2025).
(13) H. Zhou, H. Li, S. Liu, L. Cao, S. Chai, Y. Gao, X. Huang, Shared and distinctive changes of the white matter integrity in generalized anxiety disorder with or without depressive disorder, Journal of Psychiatric Research (2025).
(14) J.M. Soares, P. Marques, V. Alves, N. Sousa, A hitchhiker's guide to diffusion tensor imaging, Frontiers in Neuroscience, 7, p. 31 (2013).
(15) H.P. Müller, M.R. Turner, J. Grosskreutz, S. Abrahams, P. Bede, V. Govind, J. Kassubek, A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis, Journal of Neurology, Neurosurgery & Psychiatry, 87, 6, pp. 570–579 (2016).
(16) S. Palanisamy, T. Ramasamy, MEDI-NET: Cloud-based framework for medical data retrieval system using deep learning, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 2, pp. 255–260 (2024).
(17) H. Arruda, E.R. Silva, M. Lessa, D. Proença Jr, R. Bartholo, VOSviewer and bibliometrix, Journal of the Medical Library Association: JMLA, 110, 3, p. 392 (2022).
(18) M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, S.M. Smith, FSL, Neuroimage, 62, 2, pp. 782–790 (2012).
(19) M.W. Woolrich, S. Jbabdi, B. Patenaude, M. Chappell, S. Makni, T. Behrens, S.M. Smith, Bayesian analysis of neuroimaging data in FSL, Neuroimage, 45, 1, pp. S173–S186 (2009).
(20) S.M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E. Behrens, H. Johansen-Berg, P.M. Matthews, Advances in functional and structural MR image analysis and implementation as FSL, Neuroimage, 23, pp. S208–S219 (2004).
(21) Y. Zhang, M. Brady, S. Smith, Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm, IEEE Transactions on Medical Imaging, 20, 1, pp. 45–57 (2001).
(22) A. Topor, D. Ulieru, C. Ravariu, F. Babarada, Development of a new one-eye implant by 3D bioprinting technique, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 2, pp. 247–250 (2023).
(23) J. Bijsterbosch, S.M. Smith, C. Beckmann, An Introduction to Resting State fMRI Functional Connectivity, Oxford University Press (2017).
(24) A. Jahn, Andy’s Brain Book, Jahn (2022).
(25) C. Beaulieu, The basis of anisotropic water diffusion in the nervous system – a technical review, NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, 15, 7–8, pp. 435–455 (2002).
(26) V. Baliyan, C.J. Das, R. Sharma, A.K. Gupta, Diffusion weighted imaging: technique and applications, World Journal of Radiology, 8, 9, p. 785 (2016).
(27) C.-L. Cocianu, C.R. Uscatu, Image Processing Techniques, ASE Publishing House (2017).
(28) A. Appathurai, A.S.I. Tinu, M. Narayanaperumal, MEG and PET images-based brain tumor detection using Kapur’s Otsu segmentation and Sooty optimized MobileNet classification, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 3, pp. 359–364 (2024).
(29) P.J. Basser, E. Ozarslan, Anisotropic diffusion: from the apparent diffusion coefficient to the apparent diffusion tensor, in Diffusion MRI: Theory, Methods, and Applications, Oxford University Press, Oxford, pp. 79–91 (2010).
(30) E.M. Palacios, E.L. Yuh, C.L. Mac Donald, et al., Diffusion tensor imaging reveals elevated diffusivity of white matter microstructure that is independently associated with long-term outcome after mild traumatic brain injury: a TRACK-TBI study, J. Neurotrauma, 39, 19–20, pp. 1318–1328 (2022).
(31) S. Boucher, G. Arribarat, B. Cartiaux, E.A. Lallemand, P. Péran, A. Deviers, G. Mogicato, Diffusion tensor imaging tractography of white matter tracts in the equine brain, Frontiers in Veterinary Science, 7, p. 382 (2020).
(32) A. Ramaiah, P.D. Balasubramanian, A. Appathurai, M. Narayanaperumal, Detection of Parkinson's disease via Clifford gradient-based recurrent neural network using multi-dimensional data, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 1, pp. 103–108 (2024).
(33) M.B. Priya, C. Ramakrishnan, S. Karthik, Fetal 3D-echo classification and segmentation using color and textural features for TR detection, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 1, pp. 115–120 (2024).
(34) I.S.M. Molina, R.A. Salo, A. Abdollahzadeh, J. Tohka, O. Gröhn, A. Sierra, In vivo diffusion tensor imaging in acute and subacute phases of mild traumatic brain injury in rats, Eneuro, 7, 3 (2020).
(35) M. Ileana, Elevating medical efficiency and personalized care through the integration of artificial intelligence and distributed web systems, International Conference on Intelligent Tutoring Systems, pp. 3–11, Springer Nature Switzerland, Cham (2024).
(36) M. Ileana, Optimizing performance of distributed web systems, Informatica Economica, 27, 4, pp. 78–87 (2023).
(37) M. Ileana, M.I. Oproiu, C.V. Marian, Using Docker Swarm to improve performance in distributed web systems, International Conference on Development and Application Systems (DAS), pp. 1–6 (2024).
(38) C.A. Cazan, C.V. Marian, Automation improvement for GIS–based applications deployment in fast-growing high scalability data–rooms, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 3, pp. 347–352 (2024).
(39) M. Van Steen, A.S. Tanenbaum, Distributed Systems, p. 20, Maarten van Steen, Leiden, The Netherlands (2017).
(40) M. Ileana, P. Petrov, V. Milev, Optimizing customer experience by exploiting real-time data generated by IoT and leveraging distributed web systems in CRM systems, IoT, 6, 2, p. 24 (2025).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.