EXPERIMENTALLY VALIDATED STUDIES OF THERMOELECTRIC GENERATORS INSTALLED ON A COMPRESSOR TEST BENCH

Authors

DOI:

https://doi.org/10.59277/RRST-EE.2025.2.7

Keywords:

Thermoelectric generators, Waste heat, Energy harvesting, Industrial compressor, Finite element analysis (FEA)

Abstract

This paper presents preliminary experimental work on a twin-screw compressor, aiming to validate numerical studies and demonstrate the potential of thermoelectric energy harvesting. Considering two thermoelectric modules, the experimental validations are conducted in an industrially relevant environment on a test bench for industrial air and gas compressors. The digital twin was simulated using finite element analysis, provided with a heat sink, and a fully coupled heat transfer and electric field was solved to assess the thermoelectric effect. This allows for complete modeling of the Peltier-Seebeck-Thomson effects. The compressor vibrations are also introduced for structural analysis to ascertain that the bismuth telluride thermoelectric modules are safe to use under sinusoidal mechanical vibrations. The thermoelectric generators are screwed onto the hottest part of the compressor skid, specifically the multiplier gearbox cover, which is splashed with hot lubrication oil from within. After the thermal stabilization of the compressor, we obtained a constant series voltage of around 0.4 VDC from the two thermoelectric generators, and the series current was measured to a value of 115 mA.

Author Biographies

  • CLAUDIA SĂVESCU, Romanian Research and Development Institute for Gas Turbines COMOTI, Bucharest, Romania.

    Dr. Engr., Scientific Researcher gr. III

    Automation and Electrical Engineering Department

  • MIHAELA ROMAN, Romanian Research and Development Institute for Gas Turbines COMOTI, Bucharest, Romania.

    Engr., Scientific Researcher gr. III

    Automation and Electrical Engineering Department

  • CRISTIAN NECHIFOR, Romanian Research and Development Institute for Gas Turbines COMOTI, Bucharest, Romania.

    Dr. Engr., Scientific Researcher gr. III

    Automation and Electrical Engineering Department

References

(1) D. Dima, A. Dobrovicescu, C. Ioniţă, C. Dobre, Exergy analysis of the coupling of two CO2 heat pump cycles, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 2, pp. 236–240 (2023).

(2) A. Mitru, Data communication and software development for the automation of an industrial piston compressor, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 70, 1, pp. 97–102 (2025).

(3) T. Stănescu, D. Ușeriu, Performance analysis of curved shape on the inlet guide vanes in centrifugal blowers, Aerosp. Res. Bulg., 36, pp. 147–156 (2024).

(4) D. Talah, H. Bentarzi, G. Mangola, Modeling and simulation of an operating gas turbine using Modelica language, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 1, pp. 102–107 (2023).

(5) F. Niculescu, A. Săvescu, A. Mitru, Transmitting data over the network using an OPC server, MATEC Web of Conferences, 210, p. 03002 (2018).

(6) S. Priya, D. J. Inman, Eds., Energy Harvesting Technologies, Boston, MA: Springer US (2009).

(7) K. U. Laszczyk, P. Śliwiński, K. Kobashi, Chapter 7 – Energy Harvesting, Microsupercapacitors, K. Kobashi, K. Laszczyk, Eds. Woodhead Publishing, pp. 205–212 (2022).

(8) R. Dauksevicius, D. Briand, Energy Harvesting, in Material-Integrated Intelligent Systems - Technology and Applications, John Wiley & Sons, Ltd, pp. 479–528 (2018).

(9) N. Bizon, N. Mahdavi Tabatabaei, F. Blaabjerg, E. Kurt, Eds., Energy harvesting and energy efficiency: technology, methods, and applications, 37. Cham: Springer International Publishing (2017).

(10) L. Dhakar, Overview of energy harvesting technologies, Triboelectric Devices for Power Generation and Self-Powered Sensing Applications, L. Dhakar, Ed. Singapore: Springer, pp. 9–37 (2017).

(11) S. W. Yufenyuy, G. M. Mengata, L. Nneme Nneme, U. M. Bongwirnso, Indoor environment PV applications: estimation of the maximum harvestable power, Renew. Sustain. Energy Rev., 193, p. 114287 (2024).

(12) R. Maity, M. Khairul, K. Sudhakar, A. Razak, Forestvoltaics, floatovoltaics and building applied photovoltaics (BAPV) potential for a university campus, Energ. Eng., 121, 9, pp. 2331–2361 (2024).

(13) D. D’Agostino, F. Minelli, M. D’Urso, F. Minichiello, Fixed and tracking PV systems for net zero energy buildings: comparison between yearly and monthly energy balance, Renew. Energy, 195, pp. 809–824 (2022).

(14) R. Duirasamy, V. Thiyagarajan, A novel fault-tolerant generalized symmetrical topology for renewable energy and electric vehicle applications, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 4, pp. 383–388 (2024).

(15) M. A. Shoaib, M. F. Khan, B. Ali, Experimental study to gauge the influence of tilt angle on photovoltaic panel performance, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 70, 1, pp. 139–144 (2025).

(16) R. Rai, M. Ishak, S. Kumarasamy, A. Bin Mohd Halil, M. M. Quazi, Laser treated super hydrophobic glass for solar PV self cleaning application: a SWOT-TWOS-based analysis, Mater. Res. Express, 12, 1, p. 012003 (2025).

(17) B. Safaei, S. Erdem, M. Karimzadeh Kolamroudi, S. Arman, State-of-the-art review of energy harvesting applications by using thermoelectric generators, Mech. Adv. Mater. Struct., 31, 22, pp. 5605–5637 (2024).

(18) A. Prasad, R. C. Thiagarajan, Multiphysics modeling and development of thermoelectric generator for waste heat recovery, COMSOL Conference 2018, Bangalore, India, 9 August 2018.

(19) G. Pennelli, E. Dimaggio, M. Macucci, Electrical and thermal optimization of energy-conversion systems based on thermoelectric generators, Energy, 240, p. 122494 (2022).

(20) Z. Varga, E. Rácz, Experimental investigation of the performance of a thermoelectric generator, 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 159–164, March 2022.

(21) S. Singh, R. K. Maurya, S. K. Pandey, Investigation of thermoelectric properties of ZnV2O4 compound at high temperatures, J. Phys. D: Appl. Phys., 49, 42, p. 425601 (2016).

(22) M. Nesarajah, G. Frey, Multiphysics simulation in the development of thermoelectric energy harvesting systems, J. Electron. Mater., 45, 3, pp. 1408–1411 (2016).

(23) A. Belkaid, I. Colak, K. Kayisli, A direct adaptive sliding mode high voltage gain peak power tracker for thermoelectric applications, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 66, 2, pp. 131–136 (2021).

(24) ***TE-MOD-10W4V-40, www.tegpro.com (2014), https://www.tegmart.com/datasheets/TGPR-10W4V-40S.pdf.

(25) ***COMSOL Multiphysics Reference Manual (2023), https://doc.comsol.com/6.2/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf.

(26) C. Săvescu, A. Morega, Y. Veli, V. Petrescu, Numerical modelling of thermoelectric energy harvesting from industrial compressor waste heat, 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23 March 2023.

(27) M. Roman, C. Săvescu, A. Săvescu, R. Stoica, D. Comeaga, Thermoelectric generator simulations with and without heatsink, Iberian COMSOL Multiphysics Conference 2024, Málaga, Spain, 28 June 2024.

(28) C. Savescu, V. Petrescu, D. Comeaga, R. Carlanescu, M. Roman, D. Lale, A. Mitru, Thermal potential of a twin-screw compressor as thermoelectric energy harvesting source, Eng. Technol. Appl. Sci. Res., 14, 2, pp. 13449–13455 (2024).

(29) C. Borzea, V. Petrescu, I. Vlăducă, M. Roman, G. Badea, Potential of twin-screw compressor as vibration source for energy harvesting applications, APME, 17, 1, pp. 91–96 (2021).

(30) C. Borzea (Săvescu), Multisource Piezoelectric and Thermoelectric Energy Harvesting System for Industrial Machinery, Doctorate Thesis, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania (2024).

(31) C. Săvescu, D. Comeagă, M. Roman, D. Lale, R. Stoica, E. Vasile, C. Nechifor, A. Stoicescu, Experimental study of a piezoelectric harvester vibrating on an industrial screw compressor, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 70, 1, pp. 9–14 (2025).

(32) J. Dongxu, W. Zhongbao, J. Pou, S. Mazzoni, S. Rajoo, A. Romagnoli, Geometry optimization of thermoelectric modules: Simulation and experimental study, Energy Convers. Manag., 195, pp. 236–243 (2019).

(33) ***Thermoelectric Cooler Design App, COMSOL (2023), https://www.comsol.com/model/thermoelectric-cooler-30611.

(34) G. M. Guttmann, Y. Gelbstein, Mechanical Properties of Thermoelectric Materials for Practical Applications, in Bringing Thermoelectricity into Reality, IntechOpen (2018).

(35) ***Module Installation Notes, www.tegpro.com, https://www.tegmart.com/datasheets/TGPR-MOD-INST.pdf.

(36) ***TE-MOD-10W4V-40 Datasheet rev. 1.0, Tegmart.com (2014), https://www.tegmart.com/datasheets/TGPR-10W4V-40S.pdf.

Downloads

Published

14.06.2025

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

EXPERIMENTALLY VALIDATED STUDIES OF THERMOELECTRIC GENERATORS INSTALLED ON A COMPRESSOR TEST BENCH. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(2), 193-198. https://doi.org/10.59277/RRST-EE.2025.2.7