CONTROL AND IMPLEMENTATION OF A MINI CYLINDRICAL-PARABOLIC SOLAR CONCENTRATOR

Authors

  • ZEGHOUDI ABDELFETTAH Laboratory of Materials, Energetic Systems, Renewable Energies and Energy Management, Amar Teledji University of Laghouat, Algeria. Author
  • KHAIR EDINE BOUZIDI Faculty of Technology, Amar Telidji University of Laghouat, Algeria. Author

DOI:

https://doi.org/10.59277/RRST-EE.2025.4.6

Keywords:

Solar concentration, Solar tracking, Stepper motor, Automatic control, Light Dependent Resistors

Abstract

This research presents the design and implementation of a solar concentration system utilizing a cylindrical parabolic solar concentrator. The system is designed to capture and focus sunlight onto a tube containing a heat transfer fluid. The resulting heat is harnessed to produce steam, which subsequently drives a steam turbine for electricity generation. A solar tracking mechanism ensures optimal system performance throughout the day. The core of the concentration system comprises a stepper motor integrated into the mechanical structure, with communication facilitated by an Arduino board and MATLAB. The control of the solar concentrator is implemented through two distinct strategies. The first is automatic control based on light-dependent resistors (LDRs), which are used to determine the sun's position. This data is transmitted to the control system, which enables automatic adjustment of the parabolic trough solar concentrator's orientation and positioning. The second one is a manual control based on a MATLAB graphical user interface (GUI), developed to enable manual control of the solar concentrator's stepper motor. This paper investigates the intricate relationship between control precision, error, and the number of motor steps.

References

(1) K. Benmouiza, Nonlinear clustered adaptive-network-based fuzzy inference system model for hourly solar irradiation estimation, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 1, pp. 7–11 (2023).

(2) S.M. Ulaganathan, R. Muniraj, R. Vijayanand, and D. Devaraj, Novel solar photovoltaic emulation for validating the maximum power point algorithm and power converter, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 4, pp. 407–412 (2023).

(3) G.G. Tolun and Y.A. Kaplan, Development of backpropagation algorithm for estimating solar radiation: a case study in Turkey, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 3, pp. 313–316 (2023).

(4) V.G. Dogaru, F.D. Dogaru, V. Năvrăpescu, and L.M. Constantinescu, From the photovoltaic effect to a low voltage photovoltaic grid challenge – a review, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 3, pp. 263–268 (2024).

(5) M.I. Abdelwanis and A.A. Zakymaximum, Maximum power point tracking in a perovskite solar pumping system with a six-phase induction motor, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 1, pp. 15–20 (2024).

(6) S. Seba, M. Birane, and K. Benmouiza, A comparative analysis of boost converter topologies for photovoltaic systems using MPPT (PO) and beta methods under partial shading, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 68, 4, pp. 375–380 (2023).

(7) A.H. Alami, A.G. Olabi, A. Mdallal, A. Rezk, A. Radwan, S.M.A. Rahman, and M.A. Abdelkareem, Concentrating solar power (CSP) technologies: Status and analysis, International Journal of Thermofluids, 18, 100340 (2023).

(8) A. Gama, M. Haddadi, and A. Malek, Étude et réalisation d’un concentrateur cylindro-parabolique avec poursuite solaire aveugle, Journal of Renewable Energies, 11, 3, pp. 437–451 (2008).

(9) W.E. Sánchez, M.P. Jiménez, C.A. Mantilla, J.M. Toro, M.A. Villa, and G. Sinchiguano, Design and implementation of a parabolic cylinder collector with solar tracking to obtain hot water, In E3S Web of Conferences, Vol. 57, 02003, EDP Sciences (2018).

(10) A.K. Bhakta, N.K. Panday, and S.N. Singh, Performance study of a cylindrical parabolic concentrating solar water heater with nail-type twisted tape inserts in the copper absorber tube, Energies, 11, 1, 204 (2018).

(11) A. Gama, C. Larbes, A. Malek, and F. Yettou, Etude et réalisation d’un dispositif de poursuite solaire sensible destiné à un prototype d’un concentrateur cylindro-parabolique, Revue des sciences fondamentales et appliquées, 2, 1, pp. 137–148 (2010).

(12) Y.D. Arbuzov, V.M. Evdokimov, and O.V. Shepovalova, Theory of concentration distribution over the surface of axisymmetrical receiver in cylindrical parabolic mirror solar energy concentrator, Energy Reports, 6, pp. 380–394 (2020).

(13) N. Nouah, N. Djennaoui, and T. Hassani, Modélisation d’un capteur solaire cylindro-parabolique, Journal of Renewable Energies, 17, 4, pp. 559–567 (2014).

(14) S. Niyonsaba and J.B. Niyonzima, Design and sizing of a solar thermal power plant with parabolic trough collectors, Journal of Renewable Energies, 27, 1, pp. 81–98 (2024).

(15) A. Messai, Y. Benkedda, S. Bouaichaoui, and M. Benzerga, Feasibility study of parabolic trough solar power plant under Algerian climate, Energy Procedia, 42, pp. 73–82 (2013).

(16) A.B. Sproul, Derivation of the solar geometric relationships using vector analysis, Renewable Energy, 32, pp. 1187–1205 (2007).

(17) J.A. Duffie and W.A. Beckman, Solar engineering of thermal processes, 2nd ed., Wiley & Sons, New York, NY (1991).

(18) J.E. Braun and J.C. Michell, Solar geometry for fixed and tracking surfaces, Solar Energy, 31, 5, pp. 439–444 (1983).

(19) M. Iqbal, An introduction to solar radiation, Academic Press, New York (1983).

(20) R. Kittler and S. Darula, Determination of time and sun position system, Solar Energy, 93, pp. 72–79 (2013).

(21) T. Muneer, Solar radiation & daylight models for the energy efficient design of buildings, Architectural Press, Oxford (1997).

(22) R. Buckner, Astronomic and grid azimuth, Landmark Enterprises, Rancho Cordova (1984).

(23) A.T. Ali, An error modeling framework for the Sun azimuth obtained at a location with the hour angle method, Positioning, 3, pp. 21–29 (2012).

(24) M.H.M. Sidek, N. Azis, W.Z.W. Hasan, M.Z.A. Ab Kadir, S. Shafie, and M.A.M. Radzi, Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control, Energy, 124, pp. 160–170 (2017).

Downloads

Published

17.11.2025

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

CONTROL AND IMPLEMENTATION OF A MINI CYLINDRICAL-PARABOLIC SOLAR CONCENTRATOR. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(4), 465-469. https://doi.org/10.59277/RRST-EE.2025.4.6