BIAXIAL EXCITATION GENERATOR (BEGA) – 9 PHASES OPERATION IN FAULTY CONDITIONS

Authors

  • ADRIAN-DANIEL MARTIN University Politehnica Timisoara, Timisoara, Romania. Author
  • LIVIU-DANUT VITAN University Politehnica Timisoara, Timisoara, Romania. Author
  • LUCIAN TUTELEA University Politehnica Timisoara and Romanian Academy Timişoara Branch, Timisoara, Romania. Author
  • ION BOLDEA Romanian Academy Timisoara Branch, Timişoara, Romania. Author

DOI:

https://doi.org/10.59277/RRST-EE.2025.1.7

Keywords:

Biaxial excitation generator for automobiles (BEGA), Fault-tolerant system, Synchronous generator

Abstract

This paper presents a biaxial excitation generator for automobiles (BEGA) in generator mode, three three-phase windings (9 phases), and three diode bridge rectifiers DC parallel-connected for full power. BEGA is a synchronous machine with a biaxial excitation: one along the d-axis produced by the DC excitation coils (fed through brushes or contactless) and another along the q-axis produced by the PMs. The experimental demonstration of fault-tolerant characteristics was conducted under various fault conditions, including interrupted phases, short-circuited coils, and missing or short-circuited diodes. The importance of having all three three-phase windings (star-connection) connected in neutral points is highlighted and discussed. A comprehensive analysis of the impact of these faults on the harmonic spectrum is presented using a fast Fourier transform.

References

(1) S.-Y. Cherif, D. Benoudjit, M.-S. Nait-Said, N. Nait-Said, Incipient short circuit fault impact on service continuity of an electric vehicle propelled by dual induction motors structure, Rev. Roum. Sci. Tech. — Sér. Électrotechnique Énergétique, 67, 3, pp. 265–270 (2022).

(2) A.S. Abdel-Khalik, A.M. Massoud, S. Ahmed, Nine-phase six-terminal induction machine modeling using vector space decomposition, IEEE Trans. Ind. Electron., 66, 2, pp. 988–1000 (2019).

(3) T. Roubache, S. Chaouch, Nonlinear fault tolerant control of dual three-phase induction machines based electric vehicles, Rev. Roum. Sci. Tech. — Sér. Électrotechnique Énergétique, 68, 1, pp. 65–70 (2023).

(4) R. Belal, M. Flitti, M.L. Zegai, Tuning of PI speed controller in direct torque control of dual star induction motor based on genetic algorithms and neuro-fuzzy schemes, Rev. Roum. Sci. Tech. — Sér. Électrotechnique Énergétique, 69, 1, pp. 9–14 (2024).

(5) S. Nuzzo, P. Bolognesi, G. Decuzzi, P. Giangrande, M. Galea, A consequent-pole hybrid exciter for synchronous generators, IEEE Trans. Energy Convers., 36, 1, pp. 368–379 (2021).

(6) M. Niraula, L. Maharjan, B. Fahimi, M. Kiani, I. Boldea, Variable stator frequency control of stand-alone DFIG with diode rectified output, 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), pp. 1–6 (2018).

(7) F. Bu, H. Liu, W. Huang, H. Xu, Y. Hu, Recent advances and developments in dual stator-winding induction generator and system, IEEE Trans. Energy Convers., 33, 3, pp. 1431–1442 (2018).

(8) L. Tutelea, I. Boldea, N. Muntean, S.I. Deaconu, Modeling and performance of novel scheme dual winding cage rotor variable speed induction generator with DC link power delivery, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 271–278 (2014).

(9) Y. Wu, L. Sun, Z. Zhang, Z. Miao, C. Liu, Analysis of torque characteristics of parallel hybrid excitation machine drives with sinusoidal and rectangular current excitations, IEEE Trans. Magn., 54, 11, pp. 1–5 (2018).

(10) C. Ye, Y. Du, J. Yang, X. Liang, F. Xiong, W. Xu, Research of an axial flux stator partition hybrid excitation brushless synchronous generator, IEEE International Magnetics Conference (INTERMAG), pp. 1–1 (2018).

(11) L. Tutelea, D. Ursu, I. Boldea, S. Agarlita, IPM claw-pole alternator system for more vehicle braking energy recuperation, J. Electr. Eng., 12, pp. 211–220 (2012).

(12) C. Stancu, T. Ward, K. Rahman, R. Dawsey, P. Savagian, Separately excited synchronous motor with rotary transformer for hybrid vehicle application, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5844–5851 (2014).

(13) G. Dajaku, B. Lehner, Xh. Dajaku, A. Pretzer, D. Gerling, Hybrid excited claw pole rotor for high power density automotive alternators, XXII International Conference on Electrical Machines (ICEM), pp. 2536–2543 (2016).

(14) A.D. Martin, L.D. Vitan, I. Torac, L.N. Tutelea, I. Boldea, BEGA-biaxial excitation generator - operation for constant diode dc output voltage with 3,6,9 phases for increased redundancy, International Aegean Conference on Electrical Machines and Power Electronics (ACEMP), International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 383–390 (2021).

Downloads

Published

25.03.2025

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

BIAXIAL EXCITATION GENERATOR (BEGA) – 9 PHASES OPERATION IN FAULTY CONDITIONS. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(1), 39-46. https://doi.org/10.59277/RRST-EE.2025.1.7