NOVEL ACCURATE NANOSATELLITE ATTITUDE ESTIMATION AND CONTROL ARCHITECTURE BASED ON MAGNETIC DIPOLE MOMENT AND ACTUATOR FAULT COMPENSATION
DOI:
https://doi.org/10.59277/RRST-EE.2025.2.17Keywords:
Nanosatellite, Varying residual magnetic moment (RMM) compensation, Extended Kalman filter (EKF), Particle swarm optimization (PSO), Actuator faults, Adaptive proportional derivative (APD)Abstract
Nanosatellites are increasingly considered an effective alternative to traditional solutions for Earth observation missions from space. The attitude determination and control system (ADCS) is one of the key subsystems of a nanosatellite, critical for the mission’s success. This paper investigates the design of an Extended Kalman filter (EKF) for a nanosatellite attitude determination along with the residual magnetic moment and the actuator fault compensation. The proposed architecture relies on a heuristic extended Kalman filter (HEKF) and adaptive proportional-derivative (APD) controller. The optimized filtering system searches for the best measurement covariance and process noise matrices to track the best estimation of the attitude and residual magnetic moment disturbance. In addition, the APD controller, based on an observer, is designed to cope with uncertainties in actuator failure and provide a reliable attitude control for the nanosatellite. The investigated attitude filtering and control scheme is examined through numerical simulation to determine whether it offers benefits in terms of performance and convergence behavior.
References
(1) Y. Fei, T. Meng, and Z. Jin, Nano satellite attitude determination with randomly delayed measurements, Acta Astronautica, 185, 1, pp. 319–332 (2021).
(2) H. Helvajian, S. Janson, Small satellites: past, present, and future, American Institute of Aeronautics and Astronautics, Inc., Aerospace Press, pp. 1–876 (2009).
(3) J. E. Benmansour, B. Khouane, Feed-forward control design for roll/yaw attitude flexible spacecraft based on the disturbance observer, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg, 67, 2, pp. 187–191 (2022).
(4) R. Roubache, M. Benyettou, A.M.S Mohammed, A. Boudjemai, A. Bellar, Impact of the orbital eccentricity on the attitude performance before and after the deorbiting phase for Alsat-1, Advances in Space Research, 53, 3, pp. 474–89 (2014).
(5) T. Inamori, N. Sako, S. Nakasuka, Strategy of magnetometer calibration for nano-satellite missions and in-orbit performance, In AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, pp.7598 (2010).
(6) H. E. Soken, S. I. Sakai, In-orbit estimation of time-varying residual magnetic moment for small satellite applications, In AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, MA, pp. 4650 (2013).
(7) H. E. Soken, S. i. Sakai, Investigation of estimation methods for time-varying residual magnetic moment, In H. Haiyan, Procedia Engineering, APISAT, Shanghai, China, pp. 1146–1151 (2015).
(8) W. Ley, K. Wittmann, W. Hallmann, Handbook of space technology. John Wiley & Sons, Germany, pp. 1–909 (2009).
(9) A. Lassakeur, C. Underwood, Magnetic cleanliness program on cubesats for improved attitude stability, 9th International Conference on Recent Advances in Space Technologies (RAST), IEEE, Istanbul, Turkey, 11-14 June 2019.
(10) R. Srivastava, R. Sah, K. Das, Attitude and in-orbit residual magnetic moment estimation of small satellites using only magnetometer, Small Satellite Conference, Logan, United States Aug. 7-12, 2021.
(11) W. Steyn, Y. Hashida, In-orbit attitude performance of the 3-axis stabilised SNAP-1 nanosatellite, Small Satellite Conference, Logan, United States, Aug. 13-16, 2001.
(12) T. Inamori, N. Sako, S. Nakasuka, Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions, Acta Astronautica, 68, 11-12, pp. 2038–2046 (2011).
(13) H. E. Söken, An attitude filtering and magnetometer calibration approach for nanosatellites, International Journal of Aeronautical and Space Sciences, 19, 1, pp. 164–171 (2018).
(14) I. Danil, D. Roldugin, S. Tkachev, M. Ovchinnikov, R. Zharkikh, A. Kudryavtsev, M. Bychek, Attitude motion and sensor bias estimation onboard the SiriusSat-1 nanosatellite using magnetometer only, Acta Astronautica, 188, 1, pp. 295–307 (2021).
(15) L. Li, F. Wang, An attitude estimation scheme for nanosatellite using micro sensors based on decentralized information fusion, Optik, 239, 1, p. 166886 (2021).
(16) K. L. Makovec, A. J. Turner, C. D. Hall, Design and implementation of a nanosatellite attitude determination and control system, AAS/AIAA Astrodynamics Specialists Conference, Quebec, Canada, July 30 - August 2, 2001.
(17) D. Ran, T. Sheng, L. Cao, X. Chen, Y. Zhao, Attitude control system design and on-orbit performance analysis of nano-satellite — “Tian Tuo 1”, Chinese Journal of Aeronautics, 27, 3, pp. 593–601 (2014).
(18) B. Baghi, M. Kabganian, R. Nadafi, E. Arabi, Three-axis attitude stabilization of a flexible satellite using non-linear PD controller, Transactions of the Institute of Measurement and Control, 40, 2, pp. 591–605 (2018).
(19) A. Adnane, A. Bellar, M. A. S. Mohammed, J. Hong, Z. A. Foitih, Adaptive Attitude Controller Design for a Rigid Satellite with Feedback Linearization Approach, The Journal of the Astronautical Sciences, 67, 4, pp. 1445–1469 (2020).
(20) A. Adnane, H. Jiang, M. A. S. Mohammed, A. Bellar, Z. A. Foitih, Reliable Kalman filtering for satellite attitude estimation under gyroscope partial failure, 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), IEEE, Xi'an, China, May 25-27, 2018.
(21) S. Zhu, D. Wang, Q. Shen, E. K. Poh, Satellite attitude stabilization control with actuator faults, Journal of Guidance, Control, and Dynamics, 40, 5, pp. 1304–1313 (2017).
(22) C. Stefano, P. Teofilatto, M. S. Farissi, A magnetometer-only attitude determination strategy for small satellites: Design of the algorithm and hardware-in-the-loop testing, Aerospace, 7, 1, pp. 3 (2020).
(23) R. Roubache, M. Benyettou, A. Simohammed, A. Boudjemai, A. Bellar, Extended Kalman filter for attitude determination of an elliptical orbit satellites, 6th International Conference on Recent Advances in Space Technologies (RAST), IEEE, Istanbul, Turkey, 12-14 June 2013.
(24) F. Hamidia, A. Abbadi, Improved hybrid pumping system with stockage battery based on particle swarm algorithm, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg, 66, 4, pp. 243–248 (2021).
(25) Y. Adel, A. Tlemçani, An efficient study of PV/wind/battery/electrolyzer/H2-tank/FC for a remote area electrification, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg, 69, 2, pp. 129–134 (2024).
(26) B. Ahcene, A. Oubelaid, A. Chibah, Comparative study of inner and outer rotor flux reversal permanent magnet machine for direct drive wind turbine, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg, 69, 2, pp. 123–128 (2024).
(27) J. Bordeneuve-Guibé, A. Drouin, C. Roos, Advances in Aerospace Guidance, Navigation and Control, Springer International Publishing Switzerland, pp. 1–738 (2015).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.