UNE NOUVELLE MÉTHODE D'OPTIMISATION HYBRIDE UTILISÉE DANS LE CONTRÔLE PRÉDICTIF D'UN MODÈLE FRACTIONNEL NON LINÉAIRE BASÉ SUR LA STRUCTURE FRACTIONNELLE DE HAMMERSTEIN

Auteurs

  • DHOUHA CHOUAIBI Department, University Tunis El Manar, National Engineering School of Tunis, Analysis, Conception and Control of Systems Laboratory, BP N◦ 37, Belvedere, 1002, Tunis, Tunisia. Author
  • WASSILA CHAGRA Department, University Tunis El Manar, National Engineering School of Tunis, Analysis, Conception and Control of Systems Laboratory, BP N◦ 37, Belvedere, 1002, Tunis, Tunisia. Author

DOI :

https://doi.org/10.59277/RRST-EE.2024.69.4.12

Mots-clés :

Système d'ordre fractionné, Modèle Hammerstein, Problème d'optimisation, Contrôle prédictif du modèle

Résumé

Les modèles fractionnaires de Hammerstein représentent divers processus non linéaires, tels que thermiques et mécaniques. Leur inconvénient majeur est le problème d'optimisation non convexe dans un schéma de contrôle prédictif de modèle non linéaire en raison de sa non-linéarité statique. En effet, un algorithme d’optimisation efficace est nécessaire. Ce travail propose un algorithme d'optimisation hybride combinant la méthode d'optimisation de Nelder Mead et celle de Honey Badger pour synthétiser un algorithme de contrôle prédictif basé sur des modèles fractionnaires de Hammerstein. Comme l’illustrent les résultats de simulation, la méthode proposée offre de nettes améliorations des performances de convergence et de suivi.

Références

(1) H. Noureddine, B. Babes, S. Kahla, Y. Soufi, Real-time implementation of grid-connected wind energy systems: Predictive current controller, 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), Tebessa, Algeria, (December 04-05, 2019).

(2) O. Oualah, D. Kerdoun, A. Boumassata, Super-twisting sliding mode control for brushless doubly-fed reluctance generator based on wind energy conversion system, Electrical Engineering and Electromechanics, 2, pp. 86–92 (2023).

(3) B. Talbi, F. Krim, A. Laib, A. Sahli, A Sugeno-Fuzzy Tuning Approach of Weighting Factor in Model Predictive Control for PV Grid-Tied PUC7 Multi-Level Inverter, 3rd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar (20-22 March 2022).

(4) A. Bouafassa, R. Lazhar, B. Babes, R. Bayindir, Experimental design of a finite state model predictive control for improving power factor of Boost rectifier, 15th IEEE International Conference on Environment and Electrical Engineering (EEEIC 2015), Rome, Italy (10-13 June 2015).

(5) S. Yang, M.P. Wan, B.F. Ng, S. Dubey, G.P. Henze, W. Chen, K. Baskaran, Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading system, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg, 69, 2, pp. 243–248 (2024).

(6) R. Wang, Q. Gu, S. Lu, J. Tian, Z. Yin, X. Li, X. Chen, L. Yin, W. Zheng, Parallel platform controller based on adaptive difference algorithm–part1, Applied Energy, 297 (2021).

(7) Z.X. Xingjian Jing, On convergence of Volterra series expansion of a class of nonlinear systems, Asian Journal of Control, 19, 3, pp. 1089–1102 (May 2017).

(8) Z. Sabir, M.A.Z. Raja, J. Guirao, M. Shoaib, A novel design of fractional Meyer Wavelet neural networks with application to the nonlinear singular fractional LANE-EMDEN systems, Alexandria Engineering Journal, 60, 2, pp. 2641–2659 (2021).

(9) Q. Zhang, H. Wang, C. Liu, Identification of fractional-order Hammerstein nonlinear ARMAX system with colored noise, Nonlinear Dynamics, 106, pp. 3215–3230 (2021).

(10) C. Juan, A.J. Gomez, E. Baeyens, Wiener model identification and predictive control of a PH neutralization process, IEE Proceedings - Control Theory and Applications, 151, 3, pp. 329–338, (2004).

(11) M. Lawrynczuk, P. Tatjewski, Offset-free state-space nonlinear predictive control for Wiener systems, Information Sciences, 511, pp. 127–151 (2020).

(12) A. Brouri, L. Kadi, K. Lahdachi, Identification of nonlinear system composed of parallel coupling of Wiener and Hammerstein models, Asian Journal of Control, 24, 3, pp. 1152–1164 (May 2022).

(13) K. Hammar, T. Djamah, M. Bettayeb, Identification of Fractional Hammerstein system with application to a heating process, Nonlinear Dynamics (2019).

(14) L. Yang, Z. Zhao, Y. Zhang, D. Li, Rate-dependent modeling of piezoelectric actuators for nanomanipulation based on fractional Hammerstein model, Micromachines, 13, 42, pp.1–14 (2022).

(15) G. Jasmine, T. Venkatraman, B.M.S Natarajan, N. Muthukumaran, M. Veluchamy, Red Fox-Based Fractional order fuzzy PID controller for smart Led driver circuit, Rev. Roum. Sci. Techn.–Électrotechn. et Énerg, 68, 4, pp. 394–399 (2023).

(16) G. Jasmine, T. Venkatraman, B.M.S Natarajan, R. Manidevesh, Electric vehicle onboard charging via Harris Hawks optimization-based on fractional-order sliding mode controller, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg., 68, 1, pp. 30–35 (2023).

(17) J. Du, L. Zhang, J. Chen, J. Li, C. Zhu, Multi-model predictive control of Hammerstein-Wiener systems based on balanced multi-model partition, Mathematical and Computer Modelling of Dynamical Systems, 25, 4, pp. 333–353 (2019).

(18) P. Tseng, S. Yun, A coordinate gradient descent method for non-smooth separable minimization, Mathematical Programming, 117, pp. 387–423 (2009).

(19) O.D. Montoya, W.G. Gonzalez, A. Garces, Sequential quadratic programming models for solving the OPF problem in DC grids, Electric Power Systems Research, 169, pp. 18–23 (2019).

(20) Q. Songqiang, C. Zhongwen, An interior point method for nonlinear optimization with a quasi-tangential subproblem, Journal of Computational and Applied Mathematics, 334, pp. 77–96 (2018).

(21) W. Chagra, H. Degachi, M. Ksouri, Nonlinear model predictive control based on Nelder Mead optimization method, Nonlinear Dynamics, 92, 8, pp. 1–12 (2018).

(22) S. Takenaga, Y. Ozaki, M. Onishi, Practical initialization of the Nelder–Mead method for computationally expensive optimization problems, Optimization Letters, 17, pp. 283–297 (07 December 2022).

(23) E. Boudissa, F. Habbi, N. Gabour, M. Bounekhla, A new dynamic genetic selection algorithm: application to induction machine identification, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg, 66, 3, pp. 145–151 (2021).

(24) M.I. Abdelwanis, R. El-sehiemy, M.A. Hamida, Parameter estimation of permanent magnet synchronous machines using Particle Swarm optimization algorithm, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg,74, 4, pp. 377–382 (2022).

(25) R. Arun, R. Muniraj, M. Siluvairajwilljuiceiruthayarajan, Performance analysis of proportional integral derivative controller with delayed external reset and proportional integral derivative controller for time delay process, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg, 66, 4, pp. 267–273 (2021).

(26) F. Hashim, E. Houssein, H. Hussain, K. Mabrouk, S. Mai, W. Al-Atabany, Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems, Mathematics and Computers in Simulation, 192, pp. 84–110 (2022).

(27) P. Majumdar, S. Mitra, D. Bhattacharya, Honey Badger Algorithm using LENS opposition based learning and local search algorithm, Evolving Systems, pp. 1–26 (10 March 2023).

(28) D. Chouaibi, W. Chagra, Convex optimization in nonlinear predictive control based on fractional Hammerstein model. 8th International Conference on Mathematics and Computers in Sciences and Industry (MCSI), Athens, Greece (October 14-16, 2023).

(29) R. Fadhil, Z.A.H. Hassan, A hybrid Honey-Hadger Intelligence Algorithm with Nelder-Nead method and its application for reliability optimization. International Journal of Intelligent Systems and Applications in Engineering, 11, 4, pp. 136–145 (2023).

(30) D. Chouaibi, W. Chagra, Predictive control of fractional Hammerstein models, IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), Sabratha, Libya (2022).

(31) Y. Zhao, Y. Li, Y. Chen, Complete parametric identification of fractional order Hammerstein systems, International Conference on Fractional Differentiation and Its Applications. Catania, Italy (2014).

(32) D. Chouaibi, W. Chagra, Fractional predictive control of multi-input multi-output systems, International Conference on Signal, Control and Communication, Hammamet, Tunisia, (2021).

(33) A. Rhouma, F. Bouani, B.Bouzouita, M. Ksouri, Model predictive control of fractional order systems, Journal of Computational and Nonlinear Dynamics, 9, 3, (2014).

V. Prasad, K. Kothari, U. Mehta, Parametric identification of nonlinear fractional Hammerstein models, Fractal and fractional, 4, 2, (2020).

Téléchargements

Publiée

2024-11-05

Numéro

Rubrique

Automatique et ordinateurs | Automation and Computer Sciences

Comment citer

UNE NOUVELLE MÉTHODE D’OPTIMISATION HYBRIDE UTILISÉE DANS LE CONTRÔLE PRÉDICTIF D’UN MODÈLE FRACTIONNEL NON LINÉAIRE BASÉ SUR LA STRUCTURE FRACTIONNELLE DE HAMMERSTEIN. (2024). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 69(4), 437-448. https://doi.org/10.59277/RRST-EE.2024.69.4.12