IMPROVED HYBRID PUMPING SYSTEM WITH STOCKAGE BATTERY BASED ON PARTICLE SWARM ALGORITHM

Auteurs

  • FETHIA HAMIDIA Laboratoire de Recherche en Electrotechnique et en Automatique, Université de Médéa Author
  • AMEL ABBADI Laboratoire de Recherche en Electrotechnique et en Automatique, Université de Médéa Author

Mots-clés :

Hybrid PV-Wind energy, Particle swarm algorithm, Direct torque control, Ac load, Dc load

Résumé

The combination of several renewable energy sources makes it possible to optimize the production of electricity with the aim of improving the human, social, economic, and environmental conditions of daily life. This study focuses on the use of a very promising meta-heuristic optimization technique, particle swarm optimization (PSO), applied to systems powered by hybrid renewable energy sources. This work is divided into two parts, the first part aims to present the maximum power point (MPPT) PSO MPPT-PSO technique. The latter is applied to a photovoltaic (PV) system connected to a resistive load (dc load). The MPPT-PSO technique has been compared to another meta-heuristic technique called MPPT-GWO (grey wolf optimization).

The second part aims to optimize the functioning of a system composed of a wind turbine/PV battery connected to an induction motor considered as ac load. Thus, we take a closer look at the regulation as well as its optimization using the PSO. We are particularly interested in the setting coefficients of two PI regulators, the first PI regulator is used to keep the dc voltage constant, and the second is to regulate the speed of the induction motor. To confirm the effectiveness of the proposed approach, we will compare it to the techniques of the genetic algorithm (GA) and the bat (BAT) algorithm.

Références

(1) I. Issad, K. Idjdarene, S. Lalouni, Direct torque control using space vecor modulation of wind pumping system with storage, A Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg. 63, 4, pp. 397–402, 2018.

(2) W. Srisuwan, W. Sangiamvibool, Optimal controllers design for isolated hybrid wind-diesel power system using bee algorithm, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 64, 4, pp. 341–348, Bucarest, 2019.

(3) Sa. Mthwecu, S. Chowdhury, Solar PV/diesel hybrid power system design using macroeconomic analysis”, 50th International Universities Power Engineering Conference (UPEC), 2015.

(4) S. Rehman, M. Alam, J.P. Meyer, L.M. Al-Hadhrami, Feasibility study of a wind–PV–diesel hybrid power system for a village, Renewable Energy, 38, 1, pp. 258-268, 2012.

(5) D. Yu, T.o Zhang, G. He, S. Nojavan, K. Jermsittiparsert, N. Ghadimi, Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique, Journal of Energy Storage, 27, Feb. 2020.

(6) F. Hamidia, A. Abbadi, A. Moualdia, A. Morsli, M.S. Boucherit, Hybrid Wind/PV-battery pumping system based on Grasshopper algorithm, International ic3e, Bouira, Algeria.

(7) M. Zaibi, G. Champenois, X. Roboam, J. Belhadj, S. Bruno, Smart power management of a hybrid photovoltaic/wind stand-alone system coupling battery storage and hydraulic network, Mathematics and Computers in Simulation, 146, pp. 210-228, 2016.

(8) F. Hamidia, A. Abbadi, A. Tlemçani, Improved pumping system supplied by double photovoltaic panel, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg. 64, 1, pp. 87–93, Bucarest, 2019.

(9) A. Al-Gizi, A. Craciunescu, M.A. Fadel, M. Louzazni, A new hybrid algorithm for photovoltaic maximum power point tracking under partial shading conditions, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg. 63, 1, pp. 52–57, Bucarest, 2018.

(10) S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software 69, pp. 46–61, 2014.

(11) J. Barrera, O. Álvarez-Bajo, J.J. Flores, C.A. Coello, Limiting the velocity in the particle swarm optimization algorithm, Comp. y Sist., 20, 4, México, Oct./Dic., 2016.

(12) J. Kennedy, R. Eberhart, Particle Swarm Optimization, IEEE, pp. 1942-1948, 1995.

(13) M. Dorigo, T. Stützle, The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances, Chapter 9, Handbook of Metaheuristics, pp 250-285, 2003.

(14) D. Karaboga, B. Basturk, Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, Foundations of Fuzzy Logic and Soft Computing, pp. 789-798, 2007.

(15) S. Kirkpatrick, C.D. Gelatt, Jr. M.P. Vecchi, Optimization by simulated annealing, Science, 220, 4598, 1983.

(16) X.-S. Yang, Firefly Algorithm, Levy Flights and Global Optimization, arXiv:1003.1464v1 [math.OC] 7 Mar 2010.

(17) F. Glover, R. Martí, T. Search, Chapter 3, Metaheuristic Procedures for Training Neutral Networks, pp. 53-69, 2006.

(18) K. Sastry, D. Goldberg, G. Kendall, Genetic Algorithms, Chapter 4, in Search Methodologies, pp 97-125, 2005.

(19) X.-S. Yang, X. He, Bat algorithm: literature review and applications, Int. J. Bio-Inspired Computation, 5, 3, 2013.

(20) F. Hamidia, A. Abbadi, MPPT based on grey wolf optimization, IC-AIRES, Tipaza, Algeria, 2021

Téléchargements

Publiée

2022-01-06

Numéro

Rubrique

Électrotechnique et électroénergétique | Electrical and Power Engineering

Comment citer

IMPROVED HYBRID PUMPING SYSTEM WITH STOCKAGE BATTERY BASED ON PARTICLE SWARM ALGORITHM. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 66(4), 243-248. https://journal.iem.pub.ro/rrst-ee/article/view/44