DÉVELOPPEMENT D'UN SYSTÈME D'INFORMATION POUR LES STATIONS DE RECHARGE DE VOITURES ÉLECTRIQUES À L'AIDE DE DIAGRAMMES EN LANGAGE DE MODÉLISATION UNIFIÉ
DOI :
https://doi.org/10.59277/RRST-EE.2025.4.21Mots-clés :
Système d'information, Bornes de recharge pour voitures électriques, Alimentation de la couche de processus, Langage de modélisation unifié (UML)Résumé
Cet article présente une approche de haut niveau pour le développement d'un système d'information destiné aux stations de recharge pour voitures électriques, en utilisant un modèle Process Layer Supply. Ce modèle organise les processus d'activité, les règles métier, les visions et les objectifs qui soutiennent la modélisation du système. L'article modélise les aspects structurels et comportementaux du système à l'aide de diagrammes UML, plus précisément des diagrammes de classes, de cas d'utilisation et d'activités, via l'outil Papyrus UML2. Ces diagrammes facilitent la visualisation des exigences fonctionnelles, des interactions entre les utilisateurs et le système, ainsi que des composants du système pour une planification, un développement et une mise en œuvre efficaces. Le modèle comble les lacunes les plus critiques de l'infrastructure de recharge des voitures électriques et optimise le fonctionnement du système d'information pour une mise en œuvre concrète. Le système proposé est conçu pour prendre en charge les développements futurs, tels que l'intégration avec les marchés à la demande dynamique, afin d'assurer une tarification flexible et des opérations optimisées. De plus, nous utilisons du pseudocode pour relier les modèles UML abstraits aux implémentations réelles, garantissant ainsi le transfert précis de la logique du système vers le code correspondant. Étant donné que tous les composants du réseau de recharge sont logiquement interconnectés, une base durable pour la mobilité future des voitures électriques est établie.
Références
(1) T. Živojinović, N. Bojković, and S. Kaplanović, Evropski zeleni dogovor i transport: ciljevi i mere ka održivosti, ECOLOGICA, 30, 111, pp. 1–408 (2023).
(2) M. Milošević, D. Milošević, and V. Dimić, Application of fuzzy AHP approach for designing model of smart city development, In M. Gligorijević (Editor in chief), Smart Cities and Modern Technologies, ALFATECH, Belgrade, Serbia, pp. 13–24 (2024).
(3) Z. Đurić and B. Ilić, Systemic environmental protection and determinants of sustainable management, An Open Acc. Jour. Fores. and Envir., POPLAR, 211, pp. 45–57 (2023).
(4) V. Dimić, M. Milošević, D. Milošević, and D. Stević, Adjustable model of the renewable energy project for sustainable development: A case study of the Nisava District in Serbia, Sustainability, 10, 3, 775 (2018).
(5) P. Shankar, B. Morkos, D. Yadav, and J.D. Summers, Towards the formalization of non-functional requirements in conceptual design, Research in Engineering Design, 31, pp. 449–469 (2020).
(6) D. Amyot, Introduction to the User Requirements Notation: Learning by Example, Computer Networks, 42, 3, pp. 285–301 (2003).
(7) M.I. Oproiu and C.V. Marian, Virtual reality system - use case scenario for post-traumatic stress disorder symptoms treatment, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 4, pp. 449–454 (2024).
(8) M. Clemente, M.P. Fanti, G. Iacobellis, and W. Ukovich, Modeling and simulation of an electric car sharing system, A.G. Bruzzone (Ed.), European Modeling and Simulation Symposium, EMSS, Athens, Greece, pp. 587–592 (2013).
(9) M. Kumar, K.P. Panda, R.T. Naayagi, R. Thakur, and G. Panda, Comprehensive review of electric vehicle technology and its impacts: detailed investigation of charging infrastructure, power management, and control techniques, Applied Science, 13, 15, 8919 (2023).
(10) B. Koodalsamy, V. Narayanaswamy, K. Krishnamoorthy, and B. Ananthan, Implementation of Vienna rectifier with sliding mode control for electric vehicle charging stations, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 4, pp. 425–430 (2024).
(11) H. Lin, C. Bian, Y. Wang, H. Li, Q. Sun, and F. Wallin, Optimal planning of intra-city public charging stations, Energy, 238, Part C, 121948 (2022).
(12) M.S. Mastoi, S. Zhuang, H.M. Munir, M. Haris et al., An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends, Energy Reports, 8, 1, pp. 11504–11529 (2022).
(13) J. Liu, Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing, Energy Policy, 51, pp. 544–557 (2012).
(14) X. Zhang, The Design of Electric Vehicle Charging Network, M.Sc. Thesis, McMaster University, Hamilton, Ontario, Canada (2015).
(15) T. Unterluggauer, J. Rich, P.B. Andersen, and S. Hashemi, Electric vehicle charging infrastructure planning for integrated transportation and power distribution networks: A review, eTransportation, 12, 100163 (2022).
(16) S.A. Funke, F. Sprei, T. Gnann, and P. Plötz, How much charging infrastructure do electric vehicles need? A review of the evidence and international comparison, Transportation Research Part D: Transport and Environment, 77, 7, pp. 224–242 (2019).
(17) D. Müller-Eie and I. Kosmidis, Sustainable mobility in smart cities: a document study of mobility initiatives of mid-sized Nordic smart cities, Eur. Transp. Res. Rev., 15, 1 (2023).
(18) S. Maase, X. Dilrosun, M. Kooi, and R. Van den Hoed, Performance of Electric Vehicle Charging Infrastructure: Development of an Assessment Platform Based on Charging Data, World Electr. Veh. J., 9, 2, 25 (2018).
(19) P. Wang, Q. Zhang, J. Dai, S. Wang, and H.H. Cai, Integration needs and challenges for green and smart transformation of port industry based on multi-source data, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 1, pp. 73–78 (2024).
(20) U.E. Hanni, T. Yamamoto, and T. Nakamura, Modeling of the acceptable waiting time for EV charging in Japan, Sustainability, 16, 6, 2536 (2024).
(21) A. Lupasc, Use of unified modeling language in the development of object-oriented information systems, Annals of “Dunarea de Jos” University of Galati Fascicle I, Economics and Applied Informatics, 28, 3, pp. 51–56 (2021).
(22) T. Górski, UML Profile for messaging patterns in service-oriented architecture, microservices, and Internet of Things, Appl. Sci., 12, 24, 12790 (2022).
(23) V. Dimić and P. Milošević, Modeling mobility performance within smart city infrastructure using URN diagrams, In Dj. Jovanović (Editor-in-Chief), Advances in Science and Technology, COAST, Herceg Novi, Montenegro, pp. 282–290 (2024).
(24) K. Stančin, Model sustava za predlaganje digitalnih obrazovnih igara za učenike s teškoćama, Zbornik Veleučilišta u Rijeci, 12, 1, pp. 145–161 (2024).
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE 2025

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.