CONTRÔLE DE L'ANGLE D'INCLINAISON DES ÉOLIENNES PAR RÉSEAUX DE NEURONES ARTIFICIELS

Auteurs

  • HALIL EROL Engineering Faculty, Department of Electrical and Electronics Engineering, Osmaniye Korkut Ata University, Osmaniye, Türkiye. Author
  • ATAKAN ARSLAN Engineering Faculty, Department of Electrical and Electronics Engineering, Osmaniye Korkut Ata University, Osmaniye, Türkiye. Primary Contact Author

DOI :

https://doi.org/10.59277/RRST-EE.2025.2.14

Mots-clés :

Éolienne, Réseaux de neurones artificiels, Systèmes d'inférence neuro-floue adaptatifs (ANFIS), Contrôle de l'angle d'inclinaison

Résumé

Le contrôle de l'angle de pas des éoliennes est nécessaire pour obtenir un rendement maximal à des vitesses de vent variables. La structure de contrôle du pas des éoliennes n'étant pas linéaire, le contrôle ne peut être pleinement assuré et des oscillations se produisent à la puissance de sortie. Ces oscillations peuvent augmenter car l'angle de pas ne peut pas être ajusté de manière stable. Cette étude utilise le contrôle de l'angle de pas à l'aide de réseaux de neurones artificiels, d'un contrôleur proportionnel-intégral-dérivé (PID) et de systèmes d'inférence neuro-floue adaptatifs (ANFIS). La comparaison des sorties du réseau de neurones artificiels, du PID et de l'ANFIS montre que le système créé à l'aide du réseau de neurones artificiels produit de meilleurs résultats que le PID. Cependant, le meilleur résultat est obtenu avec le contrôle de l'angle de pas par l'ANFIS. Deux types d'indices de performance sont utilisés pour la comparaison des performances : les indices de performance d'erreur et les indices de performance de temps de réponse. Compte tenu des paramètres de performance du contrôle, le dépassement maximal du système contrôlé par PID est de 0,68 %, tandis que celui du système contrôlé par réseau de neurones artificiels est de 0,48 %. Le dépassement maximal du système contrôlé par ANFIS est de 0,46 %. Par conséquent, les performances du système et la puissance de sortie sont meilleures que celles des études publiées.

Références

(1) H. Erol, Stability analysis of pitch angle control of large wind turbines with fractional order PID controller, Sustainable Energy Grids & Networks, 26 (2021).

(2) M. Shoaib, et al, Assessment of wind energy potential using wind energy conversion system, Journal of Cleaner Production, 216, pp. 346–360 (2019).

(3) C. Cooney, et al, Performance characterization of a commercial-scale wind turbine operating in an urban environment, using real data, Energy for Sustainable Development, 36, pp. 44–54 (2017).

(4) M. El-Ahmar, A.-H. Ahmed, A. Hemeida, Evaluation of factors affecting wind turbine output power, pp. 1471–1476 (2017).

(5) H. Erol, A. Arslan, Analysis of wind turbine blade pitch angle control with fuzzy logic, The International Journal of Materials and Engineering Technology, 5, 1, pp. 18–22 (2022).

(6) H. Bouregba, et al, Stability analysis of the pitch angle control of large wind turbines using different controller strategies, Advances in Mechanical Engineering, 14, 11, 16878132221139926 (2022).

(7) Z. Civelek, Optimization of fuzzy logic (Takagi-Sugeno) blade pitch angle controller in wind turbines by genetic algorithm, Engineering Science and Technology, an International Journal, 23, 1, pp. 1–9 (2020).

(8) A. Iqbal, et al, Efficacious pitch angle control of variable-speed wind turbine using fuzzy-based predictive controller, Energy Reports, 6, pp. 423–427 (2020).

(9) A. Lasheen, A.L. Elshafei, Wind-turbine collective-pitch control via a fuzzy predictive algorithm, Renewable Energy, 87, pp. 298–306 (2016).

(10) J.E. Sierra-Garcia, M. Santos, R. Pandit, Wind turbine pitch reinforcement learning control improved by PID regulator and learning observer, Engineering Applications of Artificial Intelligence, 111, 104769 (2022).

(11) I. Yaichi, S.A. Wira, P. Wira, Control of doubly fed induction generator using artificial neural network controller, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 1, pp. 46–51 (2023).

(12) S. Bellarbi, A.B., Maximum power wind extraction with feedback linearization control approach, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 3, pp. 237–240 (2022).

(13) R. Tiwari, R.Babu.N, N. Comparative analysis of pitch angle controller strategies for PMSG-based wind energy conversion system, International Journal of Intelligent Systems and Applications, 9, pp. 62–73 (2017).

(14) A.S. Yilmaz, Z. Ozer, Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks, Expert Systems with Applications, 36, 6, pp. 9767–9775 (2009).

(15) A. Dahbi, N. Nait-Said, M.S. Nait-Said, A novel combined MPPT-pitch angle control for wide range variable speed wind turbine based on neural network, International Journal of Hydrogen Energy, 41, 22, pp. 9427–9442 (2016).

(16) H. Jafarnejadsani, J. Pieper, J. Ehlers, Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network, IEEE Transactions on Control Systems Technology, 21, 6, pp. 2264–2272 (2013).

(17) P. Bagheri, Q. Sun, Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics, ISA Transactions, 63, pp. 233–241 (2016).

(18) E. Chavero-Navarrete, et al, Pitch angle optimization by intelligent adjusting the gains of a PI controller for small wind turbines in areas with drastic wind speed changes, Sustainability, 11, 23, 6670 (2019).

(19) J.E. Sierra-Garcia, M. Santos, Deep learning and fuzzy logic to implement a hybrid wind turbine pitch control, Neural Computing and Applications, 34, 13, pp. 10503–10517 (2022).

(20) A.B. Asghar, et al, Adaptive neuro-fuzzy algorithm for pitch control of variable-speed wind turbine, International Journal of Control, Automation and Systems, 20, 11, pp. 3788–3798 (2022).

(21) M.A. Abdelbaky, X. Liu, D. Jiang, Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines, Renewable Energy, 145, pp. 981–996 (2020).

(22) L. Pan, X. Wang, Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control, Renewable Energy, 159, pp. 221–237 (2020).

(23) Y. Xia, et al, Integrated structure and maximum power point tracking control design for wind turbines based on degree of controllability, Journal of Vibration and Control, 25, 2, pp. 397–407 (2019).

(24) B. Boukhezzar, H. Siguerdidjane, Nonlinear control of a variable-speed wind turbine using a two-mass model, IEEE Transactions on Energy Conversion, 26, 1, pp. 149–162 (2011).

(25) H. Erol, Delay margin computation in micro grid systems with time delay by using fractional order controller, Electric Power Components and Systems, 49, 6-7, pp. 669–680 (2022).

(26) Q. Hawari, et al, A robust gain scheduling method for a PI collective pitch controller of multi-MW onshore wind turbines, Renewable Energy, 192, pp. 443–455 (2022).

(27) R. Gao, Z. Gao, Pitch control for wind turbine systems using optimization, estimation and compensation, Renewable Energy, 91, pp. 501–515 (2016).

(28) E. Hosseini, E. Aghadavoodi, L.M. Fernández Ramírez, Improving response of wind turbines by pitch angle controller based on gain-scheduled recurrent ANFIS type 2 with passive reinforcement learning, Renewable Energy, 157, pp. 897–910 (2020).

Téléchargements

Publiée

2025-06-14

Numéro

Rubrique

Automatique et ordinateurs | Automation and Computer Sciences

Comment citer

CONTRÔLE DE L’ANGLE D’INCLINAISON DES ÉOLIENNES PAR RÉSEAUX DE NEURONES ARTIFICIELS. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(2), 235-240. https://doi.org/10.59277/RRST-EE.2025.2.14