A NEW HYBRID OPTIMIZATION METHOD USED IN PREDICTIVE CONTROL OF A NONLINEAR FRACTIONAL MODEL BASED ON FRACTIONAL HAMMERSTEIN STRUCTURE

Authors

  • DHOUHA CHOUAIBI Department, University Tunis El Manar, National Engineering School of Tunis, Analysis, Conception and Control of Systems Laboratory, BP N◦ 37, Belvedere, 1002, Tunis, Tunisia. Author
  • WASSILA CHAGRA Department, University Tunis El Manar, National Engineering School of Tunis, Analysis, Conception and Control of Systems Laboratory, BP N◦ 37, Belvedere, 1002, Tunis, Tunisia. Author

DOI:

https://doi.org/10.59277/RRST-EE.2024.69.4.12

Keywords:

Fractional order system, Hammerstein model, Optimization problem, Predictive control

Abstract

Fractional Hammerstein models represent various nonlinear processes, such as thermal and mechanical. Their major drawback is the non-convex optimization problem in a nonlinear model predictive control scheme due to its static nonlinearity. Indeed, an efficient optimization algorithm is needed. This work proposes a hybrid optimization algorithm combining the Nelder Mead optimization method and the Honey Badger one to synthesize a predictive control algorithm based on fractional Hammerstein models. As illustrated through simulation results, the proposed method offers clear improvements in convergence and tracking performances.

References

(1) H. Noureddine, B. Babes, S. Kahla, Y. Soufi, Real-time implementation of grid-connected wind energy systems: Predictive current controller, 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), Tebessa, Algeria, (December 04-05, 2019).

(2) O. Oualah, D. Kerdoun, A. Boumassata, Super-twisting sliding mode control for brushless doubly-fed reluctance generator based on wind energy conversion system, Electrical Engineering and Electromechanics, 2, pp. 86–92 (2023).

(3) B. Talbi, F. Krim, A. Laib, A. Sahli, A Sugeno-Fuzzy Tuning Approach of Weighting Factor in Model Predictive Control for PV Grid-Tied PUC7 Multi-Level Inverter, 3rd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar (20-22 March 2022).

(4) A. Bouafassa, R. Lazhar, B. Babes, R. Bayindir, Experimental design of a finite state model predictive control for improving power factor of Boost rectifier, 15th IEEE International Conference on Environment and Electrical Engineering (EEEIC 2015), Rome, Italy (10-13 June 2015).

(5) S. Yang, M.P. Wan, B.F. Ng, S. Dubey, G.P. Henze, W. Chen, K. Baskaran, Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading system, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg, 69, 2, pp. 243–248 (2024).

(6) R. Wang, Q. Gu, S. Lu, J. Tian, Z. Yin, X. Li, X. Chen, L. Yin, W. Zheng, Parallel platform controller based on adaptive difference algorithm–part1, Applied Energy, 297 (2021).

(7) Z.X. Xingjian Jing, On convergence of Volterra series expansion of a class of nonlinear systems, Asian Journal of Control, 19, 3, pp. 1089–1102 (May 2017).

(8) Z. Sabir, M.A.Z. Raja, J. Guirao, M. Shoaib, A novel design of fractional Meyer Wavelet neural networks with application to the nonlinear singular fractional LANE-EMDEN systems, Alexandria Engineering Journal, 60, 2, pp. 2641–2659 (2021).

(9) Q. Zhang, H. Wang, C. Liu, Identification of fractional-order Hammerstein nonlinear ARMAX system with colored noise, Nonlinear Dynamics, 106, pp. 3215–3230 (2021).

(10) C. Juan, A.J. Gomez, E. Baeyens, Wiener model identification and predictive control of a PH neutralization process, IEE Proceedings - Control Theory and Applications, 151, 3, pp. 329–338, (2004).

(11) M. Lawrynczuk, P. Tatjewski, Offset-free state-space nonlinear predictive control for Wiener systems, Information Sciences, 511, pp. 127–151 (2020).

(12) A. Brouri, L. Kadi, K. Lahdachi, Identification of nonlinear system composed of parallel coupling of Wiener and Hammerstein models, Asian Journal of Control, 24, 3, pp. 1152–1164 (May 2022).

(13) K. Hammar, T. Djamah, M. Bettayeb, Identification of Fractional Hammerstein system with application to a heating process, Nonlinear Dynamics (2019).

(14) L. Yang, Z. Zhao, Y. Zhang, D. Li, Rate-dependent modeling of piezoelectric actuators for nanomanipulation based on fractional Hammerstein model, Micromachines, 13, 42, pp.1–14 (2022).

(15) G. Jasmine, T. Venkatraman, B.M.S Natarajan, N. Muthukumaran, M. Veluchamy, Red Fox-Based Fractional order fuzzy PID controller for smart Led driver circuit, Rev. Roum. Sci. Techn.–Électrotechn. et Énerg, 68, 4, pp. 394–399 (2023).

(16) G. Jasmine, T. Venkatraman, B.M.S Natarajan, R. Manidevesh, Electric vehicle onboard charging via Harris Hawks optimization-based on fractional-order sliding mode controller, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg., 68, 1, pp. 30–35 (2023).

(17) J. Du, L. Zhang, J. Chen, J. Li, C. Zhu, Multi-model predictive control of Hammerstein-Wiener systems based on balanced multi-model partition, Mathematical and Computer Modelling of Dynamical Systems, 25, 4, pp. 333–353 (2019).

(18) P. Tseng, S. Yun, A coordinate gradient descent method for non-smooth separable minimization, Mathematical Programming, 117, pp. 387–423 (2009).

(19) O.D. Montoya, W.G. Gonzalez, A. Garces, Sequential quadratic programming models for solving the OPF problem in DC grids, Electric Power Systems Research, 169, pp. 18–23 (2019).

(20) Q. Songqiang, C. Zhongwen, An interior point method for nonlinear optimization with a quasi-tangential subproblem, Journal of Computational and Applied Mathematics, 334, pp. 77–96 (2018).

(21) W. Chagra, H. Degachi, M. Ksouri, Nonlinear model predictive control based on Nelder Mead optimization method, Nonlinear Dynamics, 92, 8, pp. 1–12 (2018).

(22) S. Takenaga, Y. Ozaki, M. Onishi, Practical initialization of the Nelder–Mead method for computationally expensive optimization problems, Optimization Letters, 17, pp. 283–297 (07 December 2022).

(23) E. Boudissa, F. Habbi, N. Gabour, M. Bounekhla, A new dynamic genetic selection algorithm: application to induction machine identification, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg, 66, 3, pp. 145–151 (2021).

(24) M.I. Abdelwanis, R. El-sehiemy, M.A. Hamida, Parameter estimation of permanent magnet synchronous machines using Particle Swarm optimization algorithm, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg,74, 4, pp. 377–382 (2022).

(25) R. Arun, R. Muniraj, M. Siluvairajwilljuiceiruthayarajan, Performance analysis of proportional integral derivative controller with delayed external reset and proportional integral derivative controller for time delay process, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg, 66, 4, pp. 267–273 (2021).

(26) F. Hashim, E. Houssein, H. Hussain, K. Mabrouk, S. Mai, W. Al-Atabany, Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems, Mathematics and Computers in Simulation, 192, pp. 84–110 (2022).

(27) P. Majumdar, S. Mitra, D. Bhattacharya, Honey Badger Algorithm using LENS opposition based learning and local search algorithm, Evolving Systems, pp. 1–26 (10 March 2023).

(28) D. Chouaibi, W. Chagra, Convex optimization in nonlinear predictive control based on fractional Hammerstein model. 8th International Conference on Mathematics and Computers in Sciences and Industry (MCSI), Athens, Greece (October 14-16, 2023).

(29) R. Fadhil, Z.A.H. Hassan, A hybrid Honey-Hadger Intelligence Algorithm with Nelder-Nead method and its application for reliability optimization. International Journal of Intelligent Systems and Applications in Engineering, 11, 4, pp. 136–145 (2023).

(30) D. Chouaibi, W. Chagra, Predictive control of fractional Hammerstein models, IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), Sabratha, Libya (2022).

(31) Y. Zhao, Y. Li, Y. Chen, Complete parametric identification of fractional order Hammerstein systems, International Conference on Fractional Differentiation and Its Applications. Catania, Italy (2014).

(32) D. Chouaibi, W. Chagra, Fractional predictive control of multi-input multi-output systems, International Conference on Signal, Control and Communication, Hammamet, Tunisia, (2021).

(33) A. Rhouma, F. Bouani, B.Bouzouita, M. Ksouri, Model predictive control of fractional order systems, Journal of Computational and Nonlinear Dynamics, 9, 3, (2014).

V. Prasad, K. Kothari, U. Mehta, Parametric identification of nonlinear fractional Hammerstein models, Fractal and fractional, 4, 2, (2020).

Downloads

Published

05.11.2024

Issue

Section

Automatique et ordinateurs | Automation and Computer Sciences

How to Cite

A NEW HYBRID OPTIMIZATION METHOD USED IN PREDICTIVE CONTROL OF A NONLINEAR FRACTIONAL MODEL BASED ON FRACTIONAL HAMMERSTEIN STRUCTURE. (2024). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 69(4), 437-448. https://doi.org/10.59277/RRST-EE.2024.69.4.12