AUTOMATION SYSTEM OF AN EDUCATIONAL TEST BENCH FOR NAVAL PISTON DIESEL ENGINES
DOI:
https://doi.org/10.59277/RRST-EE.2025.4.29Keywords:
Automation control system, Supervisory control and data acquisition, Test bench, Marine propulsion, Diesel engineAbstract
The paper focuses on the custom automation system of a test bench for diesel engines used on navy ships, namely on tag boats. The test bench, with its automation system, is developed for practical training at a naval academy. The test bench aims to meet the highest standards in the education of Navy students and personnel. It facilitates undertaking practical laboratory works regarding the main constructive elements, operation, monitoring, and maintenance of four-stroke internal combustion engines, of the gearbox, as well as of the propeller load simulated by a hydraulic brake. The custom-made automation control system includes a modular cabinet with drives and automation sections, featuring a local command console for engine control and a remote command console for the entire test bench, with a large display for parameter monitoring.
References
(1) M. Palocz-Andresen, Marine diesel engines, Decreasing Fuel Consumption and Exhaust Gas Emissions in Transportation: Sensing, Control and Reduction of Emissions, M. Palocz-Andresen, Ed. Berlin, Heidelberg: Springer, pp. 159–172 (2013).
(2) J.B. Woodward and T.E. Andersen, Marine engines, Encyclopedia of Physical Science and Technology (Third Edition), R.A. Meyers, Ed. New York: Academic Press, pp. 121–132 (2003).
(3) J. Castresana, G. Gabiña, L. Martin, A. Basterretxea, and Z. Uriondo, Marine diesel engine ANN modelling with multiple outputs for complete engine performance map, Fuel, 319, p. 123873 (2022).
(4) J.P. Gregório and F.M. Brójo, Development of a 4-stroke spark ignition opposed piston engine, Open Engineering, 8, 1, pp. 337–343 (2018).
(5) A. Chakraborty, S. Roy, and R. Banerjee, An experimental-based ANN approach in mapping performance-emission characteristics of a diesel engine operating in dual-fuel mode with LPG, Journal of Natural Gas Science and Engineering, 28, pp. 15–30 (2016).
(6) J. Pan, Y. Yunan, and F. Shidong, Simulation for the propeller loading of marine electrical propulsion based on MATLAB, International Conference on Electric Information and Control Engineering, pp. 2587–2591 (2011).
(7) M. Borzea, G. Fetea, and R. Codoban, Implementation and operation of a cogeneration plant for steam injection in oil field, ASME Turbo Expo 2008: Power for Land, Sea, and Air, pp. 137–146 (2009).
(8) D. Minchev, R. Varbanets, O. Shumylo, V. Zalozh, N. Aleksandrovska, P. Bratchenko, and T.H. Truong, Digital twin test-bench performance for marine diesel engine applications, Polish Maritime Research, 30, 4, pp. 81–91 (2023).
(9) M.L. Vasile, G. Dediu, F. Niculescu, C.I. Borzea, and G. Balan, Propeller load simulation on gas turbine test stand, International Conference on Electrical, Computer and Energy Technologies (ICECET), pp. 1–5 (2022).
(10) S. Izvorean and V. Stoica, Experimental test bench with diesel engine for the study of multi-fuel usage, IOP Conf. Ser.: Mater. Sci. Eng., 1220, 1, p. 012014 (2022).
(11) G. Partene, D. Simion, F. Nicolae, A. Cotorcea, A. Purcărea, and O. Volintiru, Importance of the maritime industry, evolution and statistics, Sci. Bull. Nav. Acad., XXVI, 1, pp. 133–143 (2023).
(12) Y. Ren, C. Wang, X. Chen, Z. Wang, and H. Sun, Effect of droplet diameter on icing and aerodynamic characteristics of the inertial separator blade in a marine environment, Cold Regions Science and Technology, 239, p. 104565 (2025).
(13) D. Talah and H. Bentarzi, Modeling and simulation of an operating gas turbine using Modelica language, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 1, pp. 102–107 (2023).
(14) D.T. Hountalas, Prediction of marine diesel engine performance under fault conditions, Applied Thermal Engineering, 20, 18, pp. 1753–1783 (2000).
(15) V.T. Lamaris and D.T. Hountalas, A general purpose diagnostic technique for marine diesel engines – Application on the main propulsion and auxiliary diesel units of a marine vessel, Energy Conversion and Management, 51, 4, pp. 740–753 (2010).
(16) O. Kuznyetsov and V.V. Atamaniuk, Energy-based model of a liquid piston gas compression system, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 70, 1, pp. 145–150 (2025).
(17) D. Dima, A. Dobrovicescu, C. Ioniţă, and C. Dobre, Exergy analysis of the coupling of two CO2 heat pump cycles, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 2, pp. 236–240 (2023).
(18) N.A. Visan, R. Carlanescu, D.C. Niculescu, and R. Chiriac, Study on the cumulative effects of using a high-efficiency turbocharger and biodiesel B20 fuelling on performance and emissions of a large marine diesel engine, Journal of Marine Science and Engineering, 10, 10, p. 1403 (2022).
(19) N.A. Visan, D.C. Niculescu, R. Ionescu, E. Dahlin, M. Eriksson, and R. Chiriac, Study of effects on performances and emissions of a large marine diesel engine partially fuelled with biodiesel B20 and methanol, Journal of Marine Science and Engineering, 12, 6, p. 952 (2024).
(20) C.M. Tărăbîc, G. Cican, G. Dediu, and R.M. Catană, Updating a didactical piston engine test bench, from analogue instrumentation to digital, Tehnički vjesnik, 31, 4, pp. 1087–1094 (2024).
(21) *** Caiet de sarcini - Laborator motoare diesel navale, www.anmb.ro, https://www.anmb.ro/ro/files/despre/informatii_utile/inf_publice/materiale/2023/proceduri/60_Caiet%20de%20sarcini%20Laborator%20motoare%20diesel%20navale.pdf.
(22) A. Mitru, M. Roman, and C. Cotescu, Study on automation programming to monitor and control a screw electro-compressor, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 2, pp. 231–236 (2024).
(23) R. Arun, R. Muniraj, and M.S.W. Iruthayarajan, Performance analysis of proportional integral derivative controller with delayed external reset and proportional integral derivative controller for time delay process, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 4, pp. 267–273 (2021).
(24) A. Mitru, Data communication and software development for the automation of an industrial piston compressor, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 70, 1, pp. 97–102 (2025).
(25) *** Academia Navală “Mircea cel Bătrân” Facultatea de Inginerie Marină - Departamentul Sisteme Electromecanice Navale – Laboratorul Motoare Diesel Navale, www.anmb.ro, https://www.anmb.ro/ro/files/structura/fim/laboratoare_SEN/2025/Laborator%20-%20Motoare%20diesel%20navale.pdf
Downloads
Published
Issue
Section
License
Copyright (c) 2025 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.