DEEP LEARNING AND WBG DEVICES COMBINING TO IMPROVE PV SYSTEM EFFICIENCY: ANFIS-BASED MPPT CONTROLLER

Authors

  • ELAID BOUCHETOB Faculté des hydrocarbures et de la chimie, Laboratoire d’électrification des entreprises industrielles (LREEI), Université de M’hamed Bougara, Boumerdès, Algérie. Author
  • BOUCHRA NADJI Faculté des hydrocarbures et de la chimie, Laboratoire d’électrification des entreprises industrielles (LREEI), Université de M’hamed Bougara, Boumerdès, Algérie. Author

DOI:

https://doi.org/10.59277/RRST-EE.2025.4.4

Keywords:

ANFIS, SiC devices, PV system, Efficiency, Ansys

Abstract

With the escalating demand for renewable energy sources, photovoltaic (PV) systems have emerged as a pivotal solution for sustainable power generation. The efficacy of these systems is paramount for their widespread implementation. This research article delves into the efficiency assessment of silicon carbide (SiC) components within a boost converter integrated into a PV system. Notably, the boost converter switch is under the intelligent control of an adaptive neuro-fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) controller. This innovative approach leverages AI to optimize energy extraction from PV panels, thereby enhancing overall system efficiency. The cooperation of SiC components and AI-driven control presents a novel perspective on robust and efficient PV systems. To substantiate the research, data collected from the Sidi Bel-Abès PV central is utilized to train the ANFIS. The utilization of real-world data enhances the accuracy of the predictive model, thereby increasing its applicability to practical scenarios. Integrating AI technologies with PV systems marks a significant advancement toward intelligent and adaptive energy systems.

References

(1) E. Bouchetob, B. Nadji, I. Mahdi, Efficiency comparison of silicon and silicon carbide MOSFETs in a PV system application, International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), BLIDA, pp. 1-6 (2023).

(2) E. Bouchetob, B. Nadji, Boosting reliability: a comparative study of silicon carbide (Sic) and Silicon (Si) in boost converter design using MIL-HDBK-217 Standards, Int. J. of Electrical and Computer Eng. Systems, 15, 4, pp. 313–320 (2024).

(3) S. Latreche, A. Bouafassa, B. Babes, O. Aissa, Efficient DSP-based real-time implementation of anfis regulator for single-phase power factor corrector, Rev. Roum. des Sci. Tech. Ser. Electrotech. Energ., 69, 2, pp. 141–146 (2024).

(4) N. Kalaiarasi, S.S. Dash, S. Paramasivam, C. Bharatiraja, Investigation on ANFIS aided MPPT technique for PV fed ZSI topologies in standalone applications, J. Appl. Sci. Eng., 24, 2, pp. 261–269 (2021).

(5) B. Babes et al., A dSPACE-based implementation of ANFIS and predictive current control for a single-phase boost power factor corrector, Sci. Rep., 14, 1, pp. 1–21 (2024).

(6) A. Awasthi et al., Review on sun tracking technology in solar PV system, Energy Reports, 6, pp. 392–405 (2020).

Downloads

Published

17.11.2025

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

DEEP LEARNING AND WBG DEVICES COMBINING TO IMPROVE PV SYSTEM EFFICIENCY: ANFIS-BASED MPPT CONTROLLER. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(4), 453-458. https://doi.org/10.59277/RRST-EE.2025.4.4