PROCEDURES FOR ACCELERATING THE CONVERGENCE OF THE HĂNȚILĂ METHOD FOR SOLVING THREE-PHASE CIRCUITS WITH NONLINEAR ELEMENTS – PART I
Keywords:
Harmonic analysis, Phase separation, Hănțilă method, Nonlinear three-phase circuits with controlled sources, Convergence accelerationAbstract
The Hănțilă method is a fixed-point method which treats nonlinearity by constructing a Picard-Banach sequence with assured convergence. Sometimes, the contraction factor of the operator building the iteration sequence is very close to the unit value and thus the convergence is rather slow. We propose and analyze several procedures for accelerating the calculation algorithm in case of utilizing the Hănțilă method for solving nonlinear three-phase circuits.
References
J. Ren (editor), Renewable-Energy-Driven Future, Academic Press, 2021.
M. Kamran, M. R. Fazal, Chapter 1 - Fundamentals of renewable energy systems, Academic Press, 2021.
E. Cazacu, L.-G. Petrescu, V. Ioniță, Smart Predictive Maintenance Device for Critical In-Service Motors. Energies 2022, 15, 4283.
E. Cazacu, D.-V. Groșanu, L. Petrescu, Reactive Power Management in a Grid-Connected Photovoltaic Power Station: A Case-Study, The Scientific Bulletin of Electrical Engineering Faculty, 21, 2, pp. 53–58 (2021).
S.S. Borah, M. Ghosh, A. Ranjan, Higher order multifunction filter using current differencing buffered amplifier (CDBA), Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 67, 1, pp. 59–64 (2022).
T. H. Van, T. L. Van, T. M. N. Thi, M. Q. Duong, G. N. Sava, Improving the output of dc-dc converter by phase shift full bridge applied to renewable energy, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 66, 3, pp. 175–180 (2021).
Y. Bendjeddou, R. Abdessemed, E. Merabet, Commande a flux virtuel oriente de la generatrice asynchrone a cage double étoile, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 66, 2, pp. 71–76 (2021).
G.M. Vasilescu, M. Maricaru, An efficient procedure for solving non- linear problems in electrical engineering: Hantila Method, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 64, 2, pp. 187–194 (2019).
I.F. Hantila, A method for solving nonlinear resistive networks, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 24, 2, pp. 217–226 (1979).
I.F. Hantila, M. Maricaru, R.M. Ciuceanu, L. Corlan, Harmonic analysis of circuits with nonlinear resistive elements, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 57, 4, pp. 333–340 (2012).
G.M. Vasilescu, I.F. Hantila, M. Maricaru, I. Barsan, V. Stanciu, A new method for solving the periodic steady state of nonlinear circuits, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 59, 4, pp. 339–349 (2014).
I.F. Hantila, F. Constantinescu, A.G. Gheorghe, M. Niţescu, M. Maricaru, A new algorithm for frequency domain analysis of nonlinear circuits, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 54, 1, pp. 57–66 (2009).
I.F. Hantila, M. Maricaru, M. Stanculescu, G.M. Vasilescu, Method for analyzing three-phase networks with nonlinear resistive elements, Rev. Roum. Sci. Techn. Électrotechn. et Énerg., 64, 2, pp. 103–106 (2019).
C. Tufan, I.V. Nemoianu, Method for the Analysis of Three-Phase Networks Containing Nonlinear Circuit Elements in View of an Efficient Power Flow Computation, Electronics, 10, 21, pp. 1–19 (2021).
C. Tufan, I.V. Nemoianu, M. Maricaru, M. Stanculescu, M.E. Marin, Efficient Method of Harmonic Analysis of Three-Phase Circuits with Nonlinear Controlled Switching Elements, Rev. Roum. Sci. Techn. Électrotechn. et Énerg, vol. 67, 1, pp. 47–54, Bucharest, 2022
Mathworks https://es.mathworks.com/help/physmod/sps/ref
/thyristorpiecewiselinear.html [accessed: May 12, 2022].
J. W. Eaton, https://www.gnu.org/software/octave/ [accessed: May 12, 2022]).