MAXIMUM POWER WIND EXTRACTION WITH FEEDBACK LINEARIZATION CONTROL APPROACH

Authors

  • SAMIR BELLARBI Centre de développement des énergies renouvelables CDER, BP. 62 Route de l’Observatoire Bouzareah, 16340, Alger
  • AHMED BOUFERTELLA Centre de développement des énergies renouvelables CDER, BP. 62 Route de l’Observatoire Bouzareah, 16340

Keywords:

Feedback linearity control, Wind energy conversion systems, Wind turbine, MATLAB, Simulation

Abstract

Generally, synchronous generators permanent magnet model (PMSG) are often used in wind energy conversion systems applications (low to medium power). The PMSG control used in mentoring and induction machine applications has many similarities. Can be controlled in nested speed-torque loops of the synchronous machine via a power electronics converter-specific application. Due to the nonlinearity systems of the wind energy conversion systems (WECS), can be used the feedback linearization control FLC to find the optimal solution in the present paper. To adapt this approach in WECS has been applied to energy conversion systems based on grid-synchronous generators.

References

(1) A. Tahri, S.Hassaine, S. Moreau, Experimental verification of a robust maximum power point tracking control for variable speed wind turout mechanical sensor, Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 64, 4, pp. 323–330, Bucarest (2019).

(2) D. Saheb Koussa, Y. Bouchahma, M. Koussa, S. Bellarbi, A. Boufertella, Simulation of a wind generator coupled to a diesel generator, International Renewable Energy Congress (IREC), 1-6 (2016).

(3) M. Szupulski, G. Iwanski, Synchronization of state-feedback-controlled doubly fed induction generator with the grid, Bulletin of the Polish Academy of Sciences Technical Sciences 66, 5 (2018).

(4) E. Touti, H. Kraim, R. Pusca, Modeling of an isolated induction generator considering saturation effect, Bulletin of the Polish Academy of Sciences Technical Sciences Vol. 67, No. 4, 2018.

(5) S. Bellarbi, D. Saheb Koussa, Fuzzy robust control of double-fed asynchronous generator with parameter uncertainties", Rev. Roum. Sci. Techn. –Électrotechn. et Énerg., 61, 4, p. 367 –371 Bucarest (2016).

(6) S. Bellarbi, D.S. Koussa, A. Djoudi, Sliding mode control for PMSG-based wind power system, Journal of Physics: Conf. Series 1081 (2018) 012012.

(7) Y. Errami, M. Ouassaid, M, Sliding mode control scheme of variable speed wind energy conversion system based on the PMSG for utility network connection,” in Advances and Applications in Sliding Mode Control systems, ser. Studies in Computational Intelligence. Springer International Publishing, 576, pp. 167–200 (2015).

(8) A. Asri, Y. Mehoub, S. Hassaine, P. Olivier, An adaptive fuzzy proportional integral method for maximum power point tracking control of permanent magnet synchronous generator wind energy conversion system, Rev. Roum. Sci. Techn. –Électrotechn. et Énerg., 63, 3, p. 320 –325, Bucarest (2018).

(9) A. Tahri, S.Hassaine, S. Moreau, A hybrid active fault-tolerant control scheme for wind energy conversion system based on permanent magnet synchronous generator, Bulletin of the Polish Academy of Sciences Technical Sciences, 67, 3 (2018).

(10) O. Turksoy, S. Ayasun, Y. Hames, Computation of robust PI-based pitch controller parameters for large wind turbines, Canadian Journal of Electrical and Computer Engineering, 43, 1 (2020).

(11) T. Kaczorek, Global stability of positive standard and fractional nonlinear feedback system, Bulletin of the Polish Academy of Sciences Technical Sciences, 68, 2 (2020).

(12) Z. Lahlou, Y. Berrada, I. Boumhidi, Nonlinear feedback control for a complete wind energy conversion system, International Review of Automatic Control, 12, (3 (2019).

(13) S. Bellarbi, Analysis and design of wind energy system based on nonlinear speed controller, Journal of Renewable Energies 22, 2, pp. 295–302 (2019).

(14 S. Bellarbi, Optimal estimation and tracking control for a variable-speed wind turbine with PMSG", Journal of modern power systems and clean energy, 8, 1 (2020).

(15) A. Accetta, F. Alonge, M. Cirrincione, Robust control for high performance induction motor drives based on partial state-feedback linearization, IEEE Transactions on Industry Applications, 55, 1 (2019).

(16) X. Sun, Z. Jin, Y. Cai, Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine, IEEE Transactions on Power Electronics, 35, 12 (2020).

(17) T. Menara, G. Baggio, D. Bassett, conditions for feedback linearization of network systems", IEEE Control Systems Letters, 4, 3 (2020).

(18) Z. Xiaojian, L. Mingyong, L. Yang, Impact angle control over composite guidance law based on feedback linearization and finite time control, Journal of Systems Engineering and Electronics, 29, 5, pp.1036– 1045 (2018).

Downloads

Published

30.09.2022

Issue

Section

Électrotechnique et électroénergétique / Electrical and Power Engineering