ELECTROMAGNETIC AND THERMAL FIELD STUDIES IN REDUNDANT ELECTRIC MOTORS

Authors

  • Ioana Ionica ICPE S.A. / Universitatea Politehnica din București, Şcoala Doctorală de Inginerie Electrică
  • MIRCEA MODREANU ICPE
  • ALEXANDRU M. MOREGA Polytechnic University of Bucharest, Faculty of Electrical Engineering / Doctoral School of Electrical Engineering, Romanian Academy
  • CRISTIAN BOBOC ICPE

DOI:

https://doi.org/10.36801/

Keywords:

special electrical machines, limited angle torque motors , numerical analysis, electromagnetic field, thermal field

Abstract

This paper proposes the electromagnetic and thermal analysis for a two-channel limited-angle torque motor using three-dimensional numerical models. The two-channel limited-angle torque motor that we present in the paper, unlike the classic torque motor, provides the role of two limited-angle torque motors. It represents a solution for applications where high functional performance, overall dimensions, weight and operational safety are critical. Numerical analysis will be used in the design in order to establish an optimal constructive solution from the point of view of all the engine requirements established in the Technical Specification.

Author Biographies

  • MIRCEA MODREANU, ICPE

    Mircea Modreanu

    PhD Eng at ICPE, Special Electric Machines and command systems department.

  • ALEXANDRU M. MOREGA, Polytechnic University of Bucharest, Faculty of Electrical Engineering / Doctoral School of Electrical Engineering, Romanian Academy

    Alexandru Mihail-Morega

    Prof. Dr. Eng. at the Polytechnic University of Bucharest, Faculty of Electrical Engineering and director of the Doctoral School of Electrical Engineering, Polytechnic University of Bucharest. Academician at Romanian Academy.

  • CRISTIAN BOBOC, ICPE

    Cristian Boboc

    Manager of the Special Electric Machines and Command Systems Department at ICPE.

References

(1) D. Stoia, Motoare de curent continuu excitate cu magneți permanenți, Editura Tehnică, București, 1983.

(2) ***AXYS Catalogue, brushless DC motors, 2002.

(3) ***Moog Catalogue, Direct drive brushless DC torque motors, 2013.

(4) ***Precilec Ctalogue, Permanent magnet generators and motors, 2013.

(5) ***Bental motion systems, brushless motors, 2013.

(6) ***Icpe catalogue, special electric machines, 2019.

(7) ***“Componente electromecanice pentru sisteme high tech direct drive realizate cu linii tehnologice flexibile – HTDD”, Raport tehnic, etapa 1.

(8) ***“Componente electromecanice pentru sisteme high tech direct drive realizate cu linii tehnologice flexibile ̶ HTDD”, Raport tehnic, etapa 2.

(9) P.R. Upadhyay, K.R. Rajagopal, B.P. Singh, Computer aided design of an axial-field permanent magnet brushless dc motor for an electric vehicle, Journal of Applied Physics, 93, 10, pp.8689,8691, 2003.

(10) P.R. Upadhyay, K.R. Rajagopal, FE Analysis and computer-aided design of a sandwiched axial-flux permanent magnet brushless DC motor, IEEE Transactions on Magnetics, 42, 10, pp.3401,3403, 2006.

(11) P.R. Upadhyay , K.R. Rajagopal, FE analysis and CAD of radial-flux surface mounted permanent magnet brushless DC motors, Digests of the IEEE International Magnetics Conference -INTERMAG Asia-, pp.729-730, 2005.

(12) R. Obreja, I.R. Edu, Limited Angle Torque Motors having high torque density, used in accurate Drive Systems, Acta Polytechnica,. 51, 5, pp.75-83, 2011.

(13) M.I. Andrei, N.M. Modreanu., Numeric Modelling of a Two-Channel Limited Angle Torque Motor, EEA ‒ Electrotehnică, Electronică, Automatică, Editura. ELECTRA, 62, 1, pp. 26-31, 2014.

(14) Andrei M.I., Modreanu M., Ghițulescu L., ACES methodology for a dc limited angle torque motor, Revue roumaine des sciences techniques, Série Électrotechnique et Énergétique. 2019

(15) ***Comsol Multiphysics documentation: http://www.comsol.com/

(16) M.I. Andrei, N.M. Modreanu, M. Gutu, L. Ghitulescu, Sistem de masură asistat de calculator pentru caracterizarea motoarelor de cuplu cu unghi limitat, EEA – Electrotehnică, Electronică, Automatică, Editura. ELECTRA, 62, 3, pp. 11-17, 2014.

(17) Boglietti, A. Cavagnino, D.A. Staton, thermal analysis of TEFC induction motors, Proc. of IEEE International Conference PEDS, Singapore, 2003.

(18) Boglietti, A. Cavagnino, M. Lazzari, M. Pastorelli, A simplified thermal model for variable-speed self-cooled industrial induction motor, IEEE Transactions on Industry Application,, 39, 4, pp. 945 – 952, 2003.

(19) Cassat, C. Espanet, N. Wavre, BLDC motor stator and rotor iron losses and thermal behavior based on lumped schemes and 3-D FEM analysis, IEEE Transactions on Industry Application, 39, 5, pp. 1314 – 1322, 2003.

(20) E. Lebenhaft, Field evaluation of slip-dependent thermal model for motors with high-inertia starting, Petroleum and Chemical Industry Technical Conference,. PCIC '07, pp. 1 – 5, 2007.

(21) H.P. Liu, V. Lelos, C.S. Hearn, Transient 3-D thermal analysis for an air-cooled induction motor, Proc. of IEEE International Conference (IEMDC) , pp. 417 – 420, 2005.

(22) R. Bernard, R. Glises, D. Chamagne, 3D thermal study of a low power electric motor with Flux3D, Flux-Magazine, 37, pp. 10 – 11, 2001.

(23) A.M. Morega, J.C. Ordonez, J.V.C. Vargas, S. Kosaraju, A finite element method analysis and optimization of a polymer electrolyte membrane fuel cell with interdigitated flow field design, International Journal of Energy Technologies and Policy (IJETP), Special Issue: Computational Fluid Dynamics Simulations in Energy Technologies and Processes, pp. 112-123, 2008.

Published

09.03.2023

Issue

Section

ELECTRIC MACHINES

How to Cite

ELECTROMAGNETIC AND THERMAL FIELD STUDIES IN REDUNDANT ELECTRIC MOTORS. (2023). ELECTRICAL MACHINES, MATERIALS AND DRIVES — PRESENT AND TRENDS, 18(1), 36-45. https://doi.org/10.36801/