STABILITY AND ACCURACY IMPROVEMENT IN LOW-SPEED CURRENT ESTIMATOR BASED ON SLIDING MODE TAKAGI-SUGENO ALGORITHMS

n/a

Authors

  • AIMAD AHRICHE Applied Automatics Laboratory, Faculty of Hydrocarbons and Chemistry, University of Boumerdes, Boumerdes, Algeria Author
  • IDIR ABDELHAKIM Applied Automatics Laboratory, Faculty of Hydrocarbons and Chemistry, University of Boumerdes, Boumerdes, Algeria, Author
  • MADJID KIDOUCHE Applied Automatics Laboratory, Faculty of Hydrocarbons and Chemistry, University of Boumerdes, Boumerdes, Algeria, Author
  • MOHAMED ZINLABIDINE DOGHMANE Applied Automation Laboratory, Faculty of Hydrocarbons and Chemistry, University of Boumerdes, Boumerdes, Algeria Author
  • SAAD MEKHILEF Applied Automatics Laboratory, Faculty of Hydrocarbons and Chemistry, University of Boumerdes, Boumerdes, Algeria Author

Keywords:

Sliding mode observer, Fuzzy Logic Controller, Volt per Hertz (v/f) control, Lyapunov’s theorem

Abstract

This paper is devoted to presenting a new mathematical development and hardware implementation of an accurate and stable technique for the current estimation-based sliding mode observer in high-performance speed-sensorless ac-drive. The proposed algorithm is built by using induction motor (IM) flux equations in two referential frames to enhance the robustness of the observer. Indeed, all equations are given in both stator-flux and rotor-flux rotating frames. On the other hand, to eliminate the necessity of rotor-speed adaptation, a fully speed-sensorless scheme is adopted. Furthermore, to minimize chattering and improve accuracy, a new fuzzy sliding surface is introduced instead of the conventional correction vector. The observer stability is guaranteed by means of Lyapunov’s second method. The feasibility and the effectiveness of the proposed algorithm are verified by using a hardware setup based on the DS1104 controller board. Experimental results are shown and discussed.

References

(1) A. Ahriche, M. Kidouche, S. Mekhilef, Robust sensorless sliding mode flux observer for DTC-SVM-based drive with inverter nonlinearity compensation, J. of Power Electronics, 14, 1, pp. 125–134 (2014).

(2) L. Zhao, B. Zhang, H. Yang, Y. Wang, Finite-time tracking control for pneumatic servo system via extended state observer, IET Control Theory Appl, 11, pp.2808-2816 (2017).

(3) H. Gue, H. Chen, T. Song, Tire-road forces estimation based on sliding mode observer, IEEE international conference on mechatronics and automation, Changchun, China, August. 9–12 (2009).

(4) V. Utkin, J. Guldner, J. Shi, Sliding mode control in electro-mechanical systems, CRC Press, Taylor & Francis Group (2009).

(5) L. Khelouat, A. Ahriche, S. Mekhilef, State feedback control for stabilization of PMSM-based servo-drive with parametric uncertainty using interval analysis, International Transactions on Electrical Energy Systems 31, 11 (2021).

(6) C. Lascu, I. Boldea, F. Blaabjerg, A class of speed-sensorless sliding-mode observers for high-performance induction motor drives, IEEE Trans. Ind. Electron, 56, pp.3394–3403 (2009).

(7) Z. Xu, M. F. Rahman, Comparison of a sliding observer and a Kalman filter for direct-torque-controlled IPM synchronous motor drives, IEEE Trans. Ind. Electron, 59, pp. 4179–4188 (2012).

(8) Z. Qiao, T. Shi, Y. Wang, Y. Yan, C. Xia, X. He, New sliding-mode observer for position sensorless control of permanent magnet synchronous motor, IEEE Trans. Ind. Electron, 60, pp.710–719 (2013).

(9) H. Kim, J. Son, J. Lee, A high-speed sliding-mode observer for the sensorless speed control of a PMSM, IEEE Trans. Ind. Electron, 58, pp. 4069–4077 (2011).

(10) M.L. Corradini, G. Ippoliti, S. Longhi, G. Orlando, A quasi-sliding mode approach for robust control and speed estimation of PM synchronous motors, IEEE Trans. Ind. Electron., 59, pp.1096–1104 (2012).

(11) V.Q. Leu, H.H. Choi, J.W. Jung, fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer, IEEE Trans. Ind. Electron., 27, pp.1530–1539 (2012).

(12) R. Miranda, I. Chairez, J. Moreno, Observer design for a class of parabolic PDE via sliding modes and backstepping, 11th international workshop on variable structure systems, Mexico City, Mexico, June. 26–28 (2010).

(13) Deia, M. Kidouche, A. Ahriche, Fully decentralized fuzzy sliding mode control with chattering elimination for a quadrotor attitude, IEEE International Conference on Electrical Engineering, Boumerdes, Algeria, December 13–15 (2015).

(14) A. Ahriche, M. Kidouche, A. Idir, Combining sliding mode and second Lyapunov function for flux estimation, Rev. Roum. Sci. Techn. – Electrotechn. et Energ., 61, 2, pp. 106-110 (2016).

(15) B. Bouchiba, A. Hazzab, and H. Glaoui, Multiple-Input multiple-output fuzzy sliding mode controller for multi-motors system, Rev. Roum. Sci. Techn.–Électrotechn. et Énerg, 57, 2, pp. 202-211 (2012).

(16) L. Youb and A. Crăciunescu, Commande directe de couple et commande vectorielle de la machine asynchrone, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 53, 1, pp. 87-98, (2008).

(17) P. Vas, Sensorless Vector and Direct Torque Control. Oxford, U.K Oxford Univ. Press (1998).

(18) O. Chee-mun, Dynamic simulation of electric machinery using MATLAB/SIMULINK, Prentice Hall PTR, Chap. 6, 1998.

Downloads

Published

01.07.2022

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

STABILITY AND ACCURACY IMPROVEMENT IN LOW-SPEED CURRENT ESTIMATOR BASED ON SLIDING MODE TAKAGI-SUGENO ALGORITHMS: n/a. (2022). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 67(2), 99-104. https://journal.iem.pub.ro/rrst-ee/article/view/127