NEW SOLUTION oF HIGH FORCE LINEAR ACTUATOR WITH permanent magnets
DOI:
https://doi.org/10.59277/RRST-EE.2024.2.8Keywords:
Linear actuator, Electromagnetic devices, Nd-Fe-B permanent magnets, High holding force, Excitation coils, Numerical analysis, Ferromagnetic circuit, High air gapAbstract
This paper presents a new design, numerical modeling, and experimental validation of a high-force linear actuator with permanent magnets. The proposed linear actuator solution is designed similarly to a classical electromagnet but is equipped with NdFeB permanent magnets and an auxiliary magnetic circuit. These auxiliary components produce a high static holding force when the actuator functions in one of its main operating positions. Like most linear actuators, the new solution has two operating positions: maximum air gap (open position) and minimum air gap (close position). This article aims to present the novel design, the working principle, and the implementation and experimental results of the actuator. The numerical solution of the actuator was obtained using the FEMM package, in which the electromagnetic parameters were computed. The force produced by the actuator was determined using the LUA script incorporated in FEMM. Numerical integration obtained other mechanical parameters (acceleration, work, and speed) with MATLAB.
References
(1) P.G. Slade, The Vacuum Interrupter – Theory, Design and Application, CRC Press, NewYork, 2001, pp. 423–430.
(2) Y.M. Yoo, D.K. Kim, B.I. Kwon, Optimal design of a permanent magnetic actuator for vacuum circuit breaker using FEM, Journal of Electrical Engineering & Technology, 1, 1, pp. 92–97, 2006.
(3) D.K. Shin, M.J. Choi, J.L. Kwon, H.K. Jung, Analysis of an Electromagnetic Actuator for Circuit Breaker, Journal of Electrical Engineering & Technology, 2, 3, pp. 346–352, 2007.
(4) G. Dumitrescu, G. Tuluca, V. Neacsu, M. Badic, Integrated electromagnetic device for actuating electric vacuum switching apparatus, Patent No. RO 120302 B1/18.12.2003.
(5) S. Nitu, C. Nitu, G. Tuluca, G. Dumitrescu, Dynamic behavior of a vacuum circuit breaker mechanism, IEEE 23rd International Symposium on Discharges and Electrical Insulation in Vacuum, 1, pp. 181–184 (2008).
(6) A.M. Chaly, O.I. Chervinskyi, V.N. Poluyanov, New generation of vacuum circuit breakers with monostable magnetic actuator, 18th International Conference on Electricity Distribution, Turin, 6-9 June 2005.
(7) A. Radulian, M. Maricaru, I.V. Nemoianu, R. Creţu, New solution of linear dc actuator with additional permanent magnets: working principle, design and testing, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 62, 1, 2017, pp. 3–7 (2021).
(8) Y. Yoo, D.K. Kim, B. Kwon, Optimal Design of a Permanent Magnetic Actuator for Vacuum Circuit Breaker using FEM, Journal of Electrical Engineering & Technology, 1, 1, pp. 92–97 (2006).
(9) D. Nicolescu, A. Radulian, M. Maricaru, S. Prică, High force heavy duty direct-current actuator, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 66, 1, pp. 139–143 (2021).
(10) D. Meeker, Finite Element Method Magnetics – Version 3.1 – FEMM 4.2 Manual (2002).
(11) I. Dobrin, D. Enache, G. Dumitru, M. Gutu, S. Zamfir, R. Pintea, Curved dipolar electromagnet, numerical modeling and design, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 4, pp. 409–415 (2022).
(12) M.N. Benallal, Ali Mahieddine, C.K.M. Khelil,A. Mazouz, Use of the B-H curves approximation for the calculation of magnetic circuits in electrical machines, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 1, pp. 42–45 (2023).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.