DESIGN AND REAL-TIME IMPLEMENTATION OF SYNERGETIC REGULATOR FOR A DC-DC BOOST CONVERTER
DOI:
https://doi.org/10.59277/RRST-EE.2024.69.3.9Keywords:
DC-DC boost converter, Synergetic voltage regulator, Lyapunov approach, Grid disturbancesAbstract
Switching DC/DC boost converters are one of the most economical devices for increasing supply voltage due to their large conversion efficiency. With the development of modern control technologies, control of DC/DC converters has become increasingly important to improve system power density and efficiency. The output voltage of these power converters must meet stringent specifications to be fast and stable. To regulate the DC/DC boost converter in the presence of disturbances, a synergistic control (SC) system derived from synergistic theory is presented in this study. Based on the state variables, the total variable manifold supports the proposed control scheme. The distinctive features of the SC system via sliding mode control are finite time convergence and chattering-free phenomena. The Lyapunov approach is used to examine the stability of the controlled system. The suggested control scheme was verified by simulation and experimentally validated using a dSPACE DS1104 card. The controller exhibits a suitable response with high performances, such as fast transient response, negligible steady-state error, and better performance under load and output voltage fluctuations.
References
(1) H.W. Choi, S.M. Kim, J. Kim et al., Current-balancing strategy for multileg interleaved DC/DC converters of electric-vehicle chargers, Journal of Power Electronics, 21, pp. 94–102 (2021).
(2) P.S. Tomar, M. Srivastava, A.K. Verma, An improved current-fed bidirectional DC–DC converter for reconfigurable split battery in EVs, IEEE Transactions on Industry Applications, 56, 6, pp. 6957–6967 (2020).
(3) N.V. Sang, W. Choi, D. Kim, Non-isolated boost charger for the Li-ion batteries suitable for fuel cell powered laptop computers, Journal of Power Electronics, 13, 1, pp. 31–39(2013).
(4) K. Seba, M. Birane, K. Benmouiza, A comparative analysis of boost converter topologies for photovoltaic systems using MPPT (PO) and beta methods under partial shading, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68, 4, pp. 375-380 (2023).
(5) K. Yari, H. Mojallali, S.H. Shahalami, A new coupled-inductor-based Buck–Boost DC–DC converter for PV applications, IEEE Transactions on Power Electronics, 37, 1, pp. 687–699(2022).
(6) M.I. Awaad, Z.E. Afifi, Design, simulation and implementation of a DC microgrid based on quadruple DC converter, Computers & Electrical Engineering, 89, 106948 (2021).
(7) S. H. Chincholkar, W. Jiang, C. Chan, An improved PWM-based sliding-mode controller for a DC–DC cascade boost converter, IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 11, pp.1639–1643 (2018).
(8) V. Repecho, D. Biel, J.M. Olm, E. Fossas, Robust sliding mode control of a DC/DC Boost converter with switching frequency regulation, Journal of the Franklin Institute, 355, pp. 5367–5383(2018).
(9) J. Wang, W. Luo, J. Liu, L. Wu, Adaptive type-2 FNN-based dynamic sliding mode control of DC–DC Boost converters, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 4, pp. 2246–2257(2021).
(10) S. H. Chincholkar, W. Jiang, C. Chan, A modified hysteresis-modulation-based sliding mode control for improved performance in hybrid DC–DC Boost converter, IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 11, pp.1683–1687 (2018).
(11) L. Cheng et al., Model predictive control for DC–DC Boost converters with reduced-prediction horizon and constant switching frequency, IEEE Transactions on Power Electronics, 33, 10, pp. 9064–9075 (2018).
(12) O. Andrés-Martínez, A. Flores-Tlacuahuac, O.F. Ruiz-Martinez, J.C. Mayo-Maldonado, Nonlinear model predictive stabilization of DC–DC Boost converters with constant power loads, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9, 1, pp. 822–830 (2021).
(13) C.A. Torres-Pinzon, R. Giral, R. Leyva, LMI-based robust controllers for dc-dc cascade boost converters, Journal of Power Electronics, 12, 4, pp. 538–547 (2012).
(14) Z. Salam, F. Taeed, S.M. Ayob, Design and implementation of a single input fuzzy logic controller for boost converters, Journal of Power Electronics, 11, 4, pp. 542–550(2011).
(15) E. Santi, A. Monti, D. Li, K. Proddutur, R.A. Dougal, Synergetic control for DC–DC Boost converter: implementation options, IEEE Transactions on Industry Applications, 39, 6, pp. 1803–1813 (2003).
(16) A. Kolesnikov, Modern Applied Control Theory: Synergetic Approach in Control Theory, TRTU, Moscow, Taganrog 2000.
(17) L. Xiao, L. Zhang, F. Gao, J. Qian, Robust fault-tolerant synergetic control for dual three-phase PMSM drives considering speed sensor fault, IEEE Access, 8, pp. 78912–78922 (2020).
(18) A.S. Malik, I. Ahmad, A. U. Rahman, Y. Islam, Integral Backstepping and Synergetic Control of Magnetic Levitation System, IEEE Access, 7, pp. 173230–173239(2019).
(19) N. Eghtedarpour, A synergetic control architecture for the integration of photovoltaic generation and battery energy storage in DC microgrids, Sustainable Energy, Grids and Networks, 20, 100250 (2019).
(20) C.H. Liu, M.Y. Hsiao, A finite time synergetic control scheme for robot manipulators, Computers & Mathematics with Applications, 64, 5, pp. 1163–1169 (2012).
(21) R. Fazal, M.A. Choudhry, Design of non-linear Static Var Compensator based on Synergetic Control Theory, Electric Power Systems Research, 151, pp. 243–250 (2017).
(22) B. Babes, A. Boutaghane, N. Hamouda, M. Mezaache, S. Kahla, A robust adaptive fuzzy fast terminal synergetic voltage control scheme for DC/DC buck converter, International Conference on Advanced Electrical Engineering (ICAEE) (2019).
(23) B. Babes, A. Boutaghane, N. Hamouda, Design and real-time implementation of an adaptive fast terminal synergetic controller based on dual RBF neural networks for voltage control of DC–DC step-down converter, Electrical Engineering, 104, 2, pp. 945–957. Springer Science and Business Media LLC (2022).
(24) B. Babes, N. Hamouda, F. Albalawi, O. Aissa, S.S.M. Ghoneim, S.A. M. Abdelwahab, Experimental investigation of an adaptive fuzzy-neural fast terminal synergetic controller for buck DC/DC converters, Sustainability, 14, 13, p. 7967. MDPI AG (2022).
(25)vN. Hamouda, B. Babes, A DC/DC Buck Converter Voltage Regulation Using an Adaptive Fuzzy Fast Terminal Synergetic Control. Lecture Notes in Electrical Engineering (pp. 711–721). Springer Nature Singapore (2020).
(26) S. Benaicha, Robust sensorless speed control of an induction motor drive using a synergetic approach, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68,4, pp. 381-387 (2023).
(27) S. Azarastemal, M. Hejri, Cascade control system design and stability analysis for a DC–DC Boost converter with proportional integral and sliding mode controllers and using singular perturbation theory, Iran J. Sci. Technol. Trans. Electr. Eng., 45, pp.1445–1462 (2021).
(28) A.Vazani, H.Mirshekali, N.Mijatovic, V.Ghaffari et al., Composite nonlinear feedback control of a DC-DC boost converter under input voltage and load variation, International Journal of Electrical Power & Energy Systems, 155, Part B, 109562 (2024).
(29) Z.B. Duranay, H. Guldemir, S. Tuncer, Fuzzy sliding mode control of DC-DC boost converter, Eng. Technol. Appl. Sci. Res., 8, 3, pp. 3054–3059 (2018).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.