ALEXANDRU TIMOTIN, A PROMINENT PERSONALITY IN SCIENCE

Authors

  • DANIEL IOAN Department of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, RO-060042 Author

DOI:

https://doi.org/10.59277/RRST-EE.2025.3.1

Keywords:

Foundation of electrical engineering, Maxwell-Hertz theory, Kirchhoff equation, Passive electromagnetic circuit element, Multi-physics port-Hamiltonian systems, Optimal structure of neurons, Computational science and engineering.

Abstract

This paper contains the presentation at the commemoration of the 100th Anniversary of the Birth of Acad. Alexandru Timotin at the Romanian Academy on April 29, 2025. Some of his outstanding scientific contributions are described. The appendix shows the relevance of his discoveries. 

References

(1) A. Bermúdez, et al., A numerical method for transient simulation of metallurgical compound electrodes, Finite Elements in Analysis and Design, 39, 4, pp. 283–299 (2003).

(2) A. Bermúdez, R. Rodríguez, P. Salgado, Numerical solution of eddy current problems in bounded domains using realistic boundary conditions, Computer Methods in Applied Mechanics and Engineering, 194, 2–5, pp. 411–426 (2005).

(3) A. Bossavit, Most general "non–local" boundary conditions for the Maxwell equation in a bounded region, Compel–Dun Laoghaire Then Bradford, 19, 2, pp. 239–245 (2000).

(4) G. Ciuprina, D. Ioan, D. Mihalache, Magnetic hooks in the finite integration technique: a way towards domain decomposition, Proceedings of the IEEE CEFC (2008).

(5) G. Ciuprina, D. Ioan, I.A. Lazar, C.B. Dita, Vector fitting based adaptive frequency sampling for compact model extraction on HPC systems, IEEE Transactions on Magnetics, 48, 2, pp. 431–434 (2012).

(6) G. Ciuprina, C.B. Dita, M.I. Andrei, D. Ioan, Hierarchical sparse circuits for the modeling of homogeneous domains in high frequency, ICs Chapter in POSDRU volume, pp. 181–188, Politehnica Press (2013).

(7) G. Ciuprina, et al., MEEC models for RFIC design based on coupled electric and magnetic circuits, IEEE Transactions on CAD of Integrated Circuits and Systems, 34, 3, pp. 395–408 (2015).

(8) G. Ciuprina, et al., Mixed domain macromodels for RF MEMS capacitive switches, Scientific Computing in Electrical Engineering, Springer, Cham, pp. 31–39 (2016).

(9) G. Ciuprina, et al., Electric circuit element boundary conditions in the finite element method for full–wave frequency domain passive devices, Scientific Computing in Electrical Engineering, Springer, Cham, pp. 95–106 (2021).

(10) G. Ciuprina, D. Ioan, R.V. Sabariego, Electric circuit element boundary conditions in the finite element method for full–wave passive electromagnetic devices, Journal of Mathematics in Industry, 12, 1, pp. 1 (2022).

(11) G. Ciuprina, D. Ioan, R. Sabariego, Full–wave dual formulations with electric circuit element boundary conditions, Communication to SCEE 2022, Amsterdam 11–14 July.

(12) G. Ciuprina, D. Ioan, R.V. Sabariego, Dual full–wave formulations with radiant electric circuit element boundary conditions–Application to monopole antenna modeling, Journal of Computational Science, 74, pp. 102155 (2023).

(13) G. Ciuprina, R.V. Sabariego, Numerical stability of dual full–wave formulations with electric circuit element boundary conditions, IEEE Transactions on Magnetics, 60, 3, pp. 1–4 (2023).

(14) G. Ciuprina, R.V. Sabriego, Electric circuit element boundary conditions for electromagneto–quasistatic and full wave models in A, φ potentials and their finite element implementation, Journal of Mathematics in Industry, 14, 1, pp. 27 (2024).

(15) F. Hantila, D. Ioan, Voltage–current relation of circuit elements with field effects, In 6th International IGTE Symposium, pp. 41–46, Graz, Austria, September 1994, then in Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 3, 4, pp. 405–416 (1994).

(16) F. Hantila, N. Vasile, B. Cranganu, I. Gheorma, T. Leuca, M. Silaghi, Elemente de Circuit cu Efect de Camp, Editura ICPE (1998).

(17) R. Hiptmair, J. Ostrowski, Electromagnetic port boundary conditions: Topological and variational perspective, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 34, 3, pp. 2839 (2021).

(18) D. Ioan, G. Ciuprina, Reduced order models of on–chip passive components and interconnects, workbench and test structures, Model Order Reduction: Theory, Research Aspects and Applications, Springer, Berlin, Heidelberg, pp. 447–467 (2008).

(19) D. Ioan, et al., Models for integrated components coupled with their EM environment, COMPEL–The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 27, 4, pp. 820–829 (2008).

(20) D. Ioan, Parametric reduced order models for passive integrated components coupled with their EM environment, Autumn School on future developments in model order reduction, Terschelling, Netherlands, September 21–25 (2009).

(21) D. Ioan, G. Ciuprina, L.M. Silveira, Effective domain partitioning with electric and magnetic hooks, IEEE Transactions on Magnetics, 45, 3, pp. 1328–1331 (2009).

(22) D. Ioan, G. Ciuprina, C.B. Dita, M.I. Andrei, Electromagnetic models of integrated circuits with coupled magnetic circuits, Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA 2012), Cape Town, South Africa, Sept. 2–7, pp. 768–771 (2012).

(23) D. Ioan, G. Ciuprina, W.H.A. Schilders, Parasitic inductive coupling of integrated circuits with their environment, International Symposium on Electromagnetic Compatibility, Tokyo, IEEE (2014).

(24) D. Ioan, G. Ciuprina, Bond graphs description of Hamiltonian multiphysics distributed systems with a finite number of ports, Communication to SCEE, Amsterdam, 11–14 July (2022).

(25) D. Ioan, Equivalent circuits of solid iron core for transient problems, Grenoble, France Compumag Communications Proceedings: 10.5/1–7, 4–6 Sept. (1978).

(26) D. Ioan, I. Munteanu, Missing link rediscovered: The electromagnetic circuit element concept, JSAEM Studies in Applied Electromagnetics and Mechanics, 8, pp. 302–320 (1999).

(27) L. Kettunen, Fields and circuits in computational electromagnetism, IEEE Transactions on Magnetics, 37, 5, pp. 3393 (2001).

(28) K. Jingook, et al., Analysis of noise coupling from a power distribution network to signal traces in high–speed multilayer printed circuit boards, IEEE Transactions on Electromagnetic Compatibility, 48, 2, pp. 319–330 (2006).

(29) C.I. Mocanu, The equivalent schemes of cylindrical conductors at transient skin effect, IEEE Transactions on Power Apparatus and Systems, 3, pp. 844–852 (1972).

(30) I. Munteanu, Two uniqueness theorems for electromagnetic field computation in domains with absorbing boundary conditions, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 42, 3, pp. 321–336 (1997).

(31) J. Niehof, et al., Domain decomposition via electromagnetic hooks for the modeling of complete RF blocks, 12th IEEE Workshop on Signal Propagation on Interconnects, IEEE (2008).

(32) R. Răduleț, A. Timotin, A.Ţugulea, O teorie generală a parametrilor lineici tranzitorii ai liniilor electrice lungi și cu pierderi in prezenta solului, Stud. Cerc. Energ. Electrotehn., 16, 3, pp. 417–449 (1966).

(33) R. Răduleț, A. Timotin, A. Tugulea, Introduction des parametres transitoires dans l'etude des circuits electrique lineaires ayant des elements non filiformes et avec pertes suplimentaires, Rev. Roum. Sci Techn. – Electrotech. et Energ., 11, 4, pp. 565–639 (1966).

(34) R. Răduleț, A. Timotin, A. Ţugulea, O teorie de câmp structurală a unei clase de sisteme liniare, Cercetările multidisciplinare s̨i interdisciplinare, 33 (1972).

(35) R. Scorretti, Coupling of external electric circuits with computational domains, M S Journal, 4, 4, pp. 865–880 (2021).

(36) S. Suuriniemi, et al., State variables for coupled circuit–field problems, IEEE Transactions on MAG., 40, 2, pp. 949–952 (2004).

(37) T. Tarhasaari, L. Kettunen, Topological approach to computational electromagnetism, Progress In Electromagnetics Research, 32, pp. 189–206 (2001).

(38) A. Timotin, A. Țugulea, Asupra interpretării electrodinamicii Maxwell–Hertz in lumina teoriei relativității, Buletinul Institutului Politehnic București, Tom XXVI, fascicola2- Electrotehnica (1964).

(39) A. Timotin, Elementul electromagnetic pasi de circuit, St. cerc. energ. electr., 21, 2, pp. 347–362 (1971).

(40) A. Timotin, La structure de la fibre nerveuse: Un projet optimal, Proceedings of the Romanian Academy, Series A 5 (2004).

(41) Z. Zhu, B. Song, J. K. White, Algorithms in FastImp, IEEE Transactions on Computer–Aided Design of Integrated Circuits and Systems, 24, 7, pp. 981–998 (2005).

(42) ***In Memoriam Al. Timotin http://revue.elth.pub.ro/upload/219815art1.pdf

(43) *** SCEE https://scee-conferences.org/posts

***http://onelab.info/onelab_wiki/index.php?title=Antennas&mobileaction.

Downloads

Published

30.08.2025

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

ALEXANDRU TIMOTIN, A PROMINENT PERSONALITY IN SCIENCE. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(3), 289-294. https://doi.org/10.59277/RRST-EE.2025.3.1