MULTI-PHASE PERMANENT MAGNET SYNCHRONOUS MOTOR USING DIRECT TORQUE ADAPTIVE FUZZY CONTROLLED

Authors

  • FAYÇAL MEHEDI Laboratoire Génie Électrique et Énergies Renouvelables (LGEER), Faculty of Technology, Hassiba Benbouali University of Chlef, Chlef 02000, Algeria. Author
  • ISMAIL BOUYAKOUB Laboratoire Génie Électrique et Énergies Renouvelables (LGEER), Faculty of Technology, Hassiba Benbouali University of Chlef, Chlef 02000, Algeria. Author
  • ABDELKADER YOUSFI Laboratory LAGC, Faculty of Science and Technology, Djilali Bounaama University, Khemis Miliana, Algeria. Author
  • ZAKARIA REGUIEG Laboratoire Génie Électrique et Énergies Renouvelables (LGEER), Faculty of Technology, Hassiba Benbouali University of Chlef, Chlef 02000, Algeria. Author

DOI:

https://doi.org/10.59277/RRST-EE.2025.4.8

Keywords:

Adaptive fuzzy logic algorithm, Direct torque control, Ripple, Robustness, Five-phase permanent magnet synchronous motor

Abstract

The performance of the conventional direct torque control (DTC-C) scheme, which is primarily based on switching tables or conventional proportional integral (PI) controllers, yields high ripples in torque and magnetic flux, thereby compromising the overall robustness of the system. This research proposes an adaptive fuzzy logic control (AFLC) for controlling a five-phase permanent magnet synchronous motor (5P-PMSM), incorporating the space vector modulation (SVM) algorithm. This approach aims to overcome the limitations of DTC-C schemes. The proposed AFLC-DTC-SVM method is designed to enhance the robustness, response time, and efficiency of the 5P-PMSM drive. Simulation results using MATLAB/Simulink demonstrate that the proposed method significantly reduces torque ripple by approximately 72% compared to the DTC-C technique and 51.16% compared to the DTC-SVM method. Flux ripple is also reduced by 71.42% and 33.33% compared to the DTC-C technique and the DTC-SVM method, respectively. Furthermore, the proposed technique offers robust performance against variations in machine parameters and load disturbances, thereby confirming its superiority over conventional methods.

References

(1) Y. Xia, B. Ren, B. Jing, Z. Chen, Analysis of transient temperature field of five-phase induction motor with composite winding under different operating conditions. Case Studies in Thermal Engineering, 63, pp. 105402 (2024).

(2) A. Zeghlache, H. Mekki, M.F. Benkhoris, A. Djerioui, D. Ziane, S. Zeghlache, Robust fault-tolerant control of a five-phase permanent magnet synchronous motor under an open-circuit fault, Appl. Sci., 14, pp. 5190 (2024).

(3) A. Muc, M. Morawiec, F. Wilczyński, Steady-state vibration level measurement of the five-phase induction machine during third harmonic injection or open-phase faults, Energies, 16, 2, pp. 838 (2023).

(4) S. Sahu, B. Nayak, R.N. Dash, Modeling and analysis of five-phase surface PMSM for application in electric vehicle, Journal of Electrical Systems, 18, 1, pp. 62–68 (2024).

(5) A. Z. Liu, A. Houari, M. Machmoum, M.F. Benkhoris, F.A. Djerioui, T. Tang, Experimental investigation of a real-time singularity-based fault diagnosis method for five-phase PMSG-based tidal current applications, ISA Transactions, 142, 4, pp. 501–514 (2023).

(6) S Mo, D. Ziane, M Oukrid, M.F. Benkhoris, N. Bernard, Dynamic modeling approach in view of vector control and behavior analysis of a multi-three-phase star permanent magnet synchronous motor Drive, Energies, 17, 7, pp. 1567 (2024).

(7) M. Oukrid, N. Bernard, M.F. Benkhoris, D. Ziane, Design and optimization of a five-phase permanent magnet synchronous machine exploiting the fundamental and third harmonic, Machines, 12, 2, pp. 117 (2024).

(8) N. Bounasla, S. Barket, Constant switching frequency predictive direct torque control of a five-phase PMSM, International Journal of System Assurance Engineering and Management, 13, pp. 772–782 (2022).

(9) W. Huang, Y. Barket, D. Xu, Model-free predictive current control of five-phase PMSM drives, Electronics, 12, 23, pp. 4848 (2023).

(10) P. Rajanikanth, M.L. Parvathy, V.K. Thippiripati, Enhanced model predictive current control-based five-phase PMSM drive, IEEE Journal of Emerging and Selected Topics in Power Electronics, 12, 1, pp. 838–848 (2024).

(11) N. Bounasla, S. Barkat, Optimum design of fractional order PIα speed controller for predictive direct torque control of a sensorless five-phase permanent magnet synchronous machine (PMSM), Journal Européen des Systèmes Automatisés (JESA)., 53, 4, pp. 437–449 (2020).

(12) V. Rathore, K.B. Yadav, Direct torque control of asymmetrical multiphase (6-phase) induction motor using modified space vector modulation, Recent Advances in Power Electronics and Drives., 707, pp. 9–45 (2021).

(13) X. Sun, X. Lin, L. Zhang, Y. Cai, An improved torque enhancement strategy for dual three-phase PMSM based on model-free predictive current control, IEEE Transactions on Transportation Electrification, (2024).

(14) F. Mehedi, R. Taleb, D.A. Belhadj, A. Yahdou, SMC-based DTC-SVM control of five-phase permanent magnet synchronous motor drive, Indonesian Journal of Electrical Engineering and Computer Science, 20, 1, pp. 100–108 (2020).

(15) B. Cao, B.M. Grainger, X. Wang, Y. Zou, G.F. Reed, Z.H. Mao, Direct torque model predictive control of a five-phase permanent magnet synchronous motor, IEEE Transactions on Power Electronics, 36, 2, pp. 2346–2360 (2021).

(16) A. Taheri, H.P. Ren, C.H. Song, Sensorless direct torque control of the six-phase induction motor by fast reduced order extended Kalman Filter, Complexity, 1, pp. 1–10 (2020).

(17) M.I. Abdelwanis, R.A. Sehiemy, M.A. Hamida, Hybrid optimization algorithm for parameter estimation of poly-phase induction motors with experimental verification, Energy AI, 5, 100083, pp. 1–15 (2021),

(18) R.E.S. Mohamed I. Abdelwanis, Efficient parameter estimation procedure using sunflower optimization algorithm for six-phase induction motor, Rev. Roum. Sci. Techn.–Électrotechn. et Énerg., 67, 3, pp. 259–264, 2022.

(19) F. Mehedi, H. Benbouhenni, L. Nezli, D. Boudana, feedforward neural network-DTC of multi-phase permanent magnet synchronous motor using five-phase neural space vector pulse width modulation strategy, Journal Européen des Systèmes Automatisé (JESA), 15, 3, pp. 345–354 (2021).

(20) N.M. Max, N.Y.J. Maurice, E. Samue, M.J. Jordan, A. Biboum, B. Laurent, DTC with fuzzy logic for multi-machine systems: traction applications, International Journal of Power Electronics and Drive Systems (IJPEDS), 12, 4, pp. 2044–2058 (2021).

(21) K. Belalia, A. Mostefa, H.M. Boulouiha, A. Draou, M. Denai, Direct torque control of a dual star induction generator based on a modified space vector PWM under fault conditions, ISA Transactions, 155, pp. 237–260 (2024).

(22) R. Bellal, M Flitti, M.L. Zegai, Tuning of Pi speed controller in direct torque control of dual star induction motor based on genetic algorithms and neuro-fuzzy schemes, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 69, 1, pp. 9–14 (2024).

(23) E. Benyoussef, S. Barkat, Three-level direct torque control based on balancing strategy of five-phase induction machine, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 2, pp. 93–98 (2022).

(24) M.A. Mossa, H. Echeikh, A. Ma’arif, Dynamic performance analysis of a five-phase PMSM drive using model reference adaptive system and enhanced sliding mode Observer, Journal of Robotics and Control (JRC), 3, 3, pp. 289–308 (2022).

(25) W. Liu, S. Sui, C.L.P. Chen, Event-triggered predefined-time output feedback fuzzy adaptive control of permanent magnet synchronous motor systems, Engineering Applications of Artificial Intelligence, 142, pp. 109882 (2025).

(26) P.Q. Khanh, H.P.H. Anh, Advanced PMSM speed control using fuzzy PI method for hybrid power control technique, Ain Shams Engineering Journal, 14, 12, pp. 102222 (2023).

(27) F. Yang, M. Li, Y. Chen, Z. Chen, Adaptive fuzzy command filtered control for asymmetric dynamic constrained nonlinear systems, Communications in Nonlinear Science and Numerical Simulation, 142, pp. 108513 (2025).

(28) S. Moosakunju, S. Mini, V.P. Ushakumari, N. Mayadevi, R. Harikumar, A hybrid fault detection and diagnosis algorithm for five-phase PMSM drive, Arabian Journal for Science and Engineering, 48, pp. 6507–6519 (2023).

Downloads

Published

17.11.2025

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

MULTI-PHASE PERMANENT MAGNET SYNCHRONOUS MOTOR USING DIRECT TORQUE ADAPTIVE FUZZY CONTROLLED. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(4), 470-476. https://doi.org/10.59277/RRST-EE.2025.4.8