COMPARISON BETWEEN SEVERAL METHODS OF IDENTIFICATION OF PHOTOVOLTAIC PARAMETERS
DOI:
https://doi.org/10.59277/RRST-EE.2025.4.10Keywords:
Identification, Artificial intelligence (AI), Photovoltaic (PV), Meta-heuristic, Least squares, Particle swarm, Genetic algorithmAbstract
Renewable energy, especially photovoltaic, is a promising solution to address the depletion of fossil fuels. Using single- and dual-diode models, solar cell modeling enables prediction of photovoltaic module behavior under various environmental conditions, making accurate parameter extraction essential. In this paper, we review different methods for identifying photovoltaic parameters, such as nonlinear least squares, and several meta-heuristic algorithms such as the genetic algorithm (GA), particle swarm optimization (PSO) and their versions combined with explicit equations (PSOX, GAX), and ant colony optimization in the continuous domain (ACOR). Experimental data are compared with these methods to identify the characteristics of a model photovoltaic panel, SY-M80W.The techniques focus on the single diode model to determine five unknown parameters, namely photovoltaic currents (Iph), saturation currents (Is), series resistance (Rs), parallel resistance (Rsh), and ideality factor (A). This comparative analysis aims to identify the most accurate method for photovoltaic parameter extraction, supporting enhanced solar energy system performance.
References
(1) A.E. Ramadan, S. Kamel, T. Khurshaid, S.R. Oh, and S.B. Rhee, Parameter extraction of three-diode solar photovoltaic model using the improved grey wolf optimizer, Sustainability, 13, 12, 6963 (2021).
(2) B. Amrouche, Contribution au développement d’une nouvelle méthode MPPT basée sur les concepts de l’intelligence artificielle pour les systèmes photovoltaïques, Doctoral dissertation, Université Blida 1-Saad Dahlab (2013).
(3) M. Madhiarasan, D.T. Cotfas, and P.A. Cotfas, Barnacles mating optimizer algorithm to extract the parameters of the photovoltaic cells and panels, Sensors, 22, 18, 6989 (2022).
(4) R. Wang, Y. Zhan, and H. Zhou, Application of artificial bee colony in model parameter identification of solar cells, Energies, 8, 8, pp. 7563–7581 (2015).
(5) P.J. Gnetchejo, S.N. Essiane, A. Dadjé, and P. Ele, A combination of Newton-Raphson method and heuristics algorithms for parameter estimation in photovoltaic modules, Heliyon, 7, 4 (2021).
(6) F. Saada, D. Delouche, K. Chabir, and M.N. Abdelkrim, Comparative analysis of DIDIM and IV approaches using double least squares method, International Journal of Advanced Computer Science and Applications, 14, 6 (2023).
(7) D. Saadaoui, M. Elyaqouti, K. Assalaou, and S. Lidaighbi, Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation, Energy Conversion and Management: X, 12, 100129 (2021).
(8) N. Arunachalam and A. Amuthan, Improved cosine similarity-based artificial bee colony optimization scheme for reactive and dynamic service composition, Journal of King Saud University - Computer and Information Sciences, 34, 2, pp. 270–281 (2022).
(9) Y. Li, K. Yu, J. Liang, C. Yue, and K. Qiao, A landscape-aware particle swarm optimization for parameter identification of photovoltaic models, Applied Soft Computing, 131, 109793 (2022).
(10) W.J. Chen, S.A. Farooqui, H.D. Liu, S.X. Lai, and P.J. Lin, Novel MPPT algorithm based on honeybees’ foraging characteristics for solar power generation systems, Heliyon, 10, 6 (2024).
(11) T. Yuan, Y. Mu, T. Wang, Z. Liu, and A. Pirouzi, Using firefly algorithm to optimally size a hybrid renewable energy system constrained by battery degradation and considering uncertainties of power sources and loads, Heliyon, 10, 7 (2024).
(12) A. Afshar and S. Madadgar, Ant colony optimization for continuous domains: Application to reservoir operation problems, In 8th International Conference on Hybrid Intelligent Systems, IEEE, pp. 13–18 (2008).
(13) A. Yahiaoui and A. Tlemçani, An efficient study of PV/Wind/Battery/Electrolyzer/H₂-Tank/FC for remote area electrification, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 2, pp. 129–134 (2024).
(14) A.A. Abd El-Mageed, A. Al-Hamadi, S. Bakheet, and A.H. Abd El-Rahiem, Hybrid sparrow search-exponential distribution optimization with differential evolution for parameter prediction of solar photovoltaic models, Algorithms, 17, 1, 26 (2024).
(15) N. Kacimi, A. Idir, S. Grouni, and M.S. Boucherit, A new combined method for tracking the global maximum power point of photovoltaic systems, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 3, pp. 349–354 (2022).
(16) D. Toumi, Comparaison de P&O et du contrôleur de logique floue dans MPPT pour applications photovoltaïques (PV) à l'aide de MATLAB/Simulink, International Pluridisciplinary PhD Meeting (IPPM’20), 1st Edition, February 23–26, El Oued, Algeria (2020).
(17) D. Rusirawan and I. Farkas, Identification of model parameters of photovoltaic solar cells, Energy Procedia, 57, pp. 39–46 (2014).
(18) S.J. Miller, The method of least squares, Mathematics Department, Brown University, 8, 1, pp. 5–11 (2006).
(19) H. Abdi, The method of least squares, Encyclopedia of Measurement and Statistics, 1, pp. 530–532 (2007).
(20) S. Li, W. Gong, and Q. Gu, A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models, Renewable and Sustainable Energy Reviews, 141, 110828 (2021).
(21) K. Khezzane and F. Khoucha, Application de la technique PSO pour la poursuite du PPM d'un système photovoltaïque, 3rd International Seminar on New and Renewable Energies, pp. 1–6 (2014).
(22) F. Hamidia and A. Abbadi, Improved hybrid pumping system with storage battery based on particle swarm algorithm, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 66, 4, pp. 243–248 (2021).
(23) D. Yousri, S.B. Thanikanti, D. Allam, V.K. Ramachandaramurthy, and M.B. Eteiba, Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters, Energy, 195, 116979 (2020).
(24) S. Obukhov, A. Ibrahim, A.A.Z. Diab, A.S. Al-Sumaiti, and R. Aboelsaud, Optimal performance of dynamic particle swarm optimization-based maximum power trackers for stand-alone PV systems under partial shading conditions, IEEE Access, 8, pp. 20770–20785 (2020).
(25) R. Belal, M. Flitti, and M.L. Zegai, Tuning of PI speed controller in direct torque control of dual star induction motor based on genetic algorithms and neuro-fuzzy schemes, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 69, 1, pp. 9–14 (2024).
(26) A. El Shahat, Maximum power point genetic identification functions for photovoltaic system, International Journal of Research and Reviews in Applied Sciences, 3, 3, pp. 264–273 (2010).
(27) J..G. de Freitas and K. Yamanaka, An accelerated and robust algorithm for ant colony optimization in continuous functions, Journal of the Brazilian Computer Society, 27, 1, 16 (2021).
(28) M.N. Nwohu and O.O. Paul, Evaluation of economic load dispatch problem in power generating stations by the use of ant colony search algorithms, International Journal of Research Studies in Electrical and Electronics Engineering (IJRSEEE), 3, 1, pp. 20–29 (2017).
(29) L. Liu, Y. Dai, and J. Gao, Ant colony optimization algorithm for continuous domains based on position distribution model of ant colony foraging, The Scientific World Journal, 2014, 1, 428539 (2014).
(30) H. Abed, S. Bourri, and H. Benariba, Identification of the parameters of a photovoltaic cell using an improved genetic algorithm (GA) technique and particular swarm optimization (PSO), Przegląd Elektrotechniczny, 2024, 11 (2024).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.