THE MONTE CARLO METHOD IN NON-HOMOGENEOUS MEDIA FOR EVALUATING THE RISK OF EXPLOSION IN TANKS

Authors

  • TUDOR MICU Babeș-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania. Author
  • DAN MICU Technical University of Cluj-Napoca, Faculty of Electrical Engineering, Cluj-Napoca, Romania. Author

DOI:

https://doi.org/10.59277/RRST-EE.2025.2.2

Keywords:

Monte Carlo method, Non-homogeneous medium, Electrostatic field, Petrol tank

Abstract

The paper presents an application of the Monte Carlo method to a model of a parallel-plane non-homogeneous medium corresponding to a parallelepiped tank. We derive the expressions for the primary and secondary statistical estimators. The network is considered rectangular, and the non-homogeneous media have the separation surface parallel to the coordinate axes. Based on these principles, we have calculated the electrostatic field at the air-gasoline separation surface and evaluated the risk of explosion based on the electric charge state of the gasoline.

References

(1) N. Golovanov, G. Popescu, T. Dumitrana, S. Coatu, Assessing the risks generated by electrostatic discharges (in Romanian), Ed. Tehnică, București (1999).

(2) O. Centea, Earthing sockets in electrical installations (in Romanian), Ed. Academiei Române, Bucureşti (2006).

(3) A. Ohsawa, Prevention criteria of electrostatic ignition by a charged cloud in grounded tanks, Original Research Article Journal of Electrostatics, 67, 2–3, pp. 280–284 (2009).

(4) F.I. Hantila, G. Preda, M. Vasiliu, Polarization method for state fields, IEEE Trans. On Magn., 36, 4, pp. 672–675 (2000).

(5) M. Stanculescu, M. Maricaru, F.I. Hantila, S. Marinescu, L. Bandici, An iterative finite element-boundary element method for efficient magnetic field computation in transformers, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 44, 3, pp.267–276 (1999).

(6) A. Kazutoshi, Electrostatic potential and field near the boundary between space charge and no charge regions within a cylindrical pipe, Journal of Electrostatics, 68, 2, pp. 132–137 (2010).

(7) D. Micu, Numerical synthesis of electrostatic field by Monte Carlo method, IEEE Trans. on Magn., 29, pp. 1966-1969 (1993).

(8) C. Tufan, M. Maricaru, I.V. Nemoianu, Procedures for accelerating the convergence on the Hănțilă method for solving three-phase circuits with nonlinear elements-part II, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 67, 4, pp. 395–401 (2022).

(9) D.D. Micu, D. Micu, Electric field computation inside a rectangular petrol tank, Journal of Electrostatics, 71, 3, pp. 332–335 (2013).

(10) T. Micu, D. Micu, D. Steț, A geometrical method for conducting spheres in electrostatic field, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 60, 4, pp. 345–354 (2015).

(11) D. Micu, A. Micu, Electromagnetic field synthesis elements (in Romanian), Ed. Dacia (2002)

Downloads

Published

14.06.2025

Issue

Section

Électrotechnique et électroénergétique | Electrical and Power Engineering

How to Cite

THE MONTE CARLO METHOD IN NON-HOMOGENEOUS MEDIA FOR EVALUATING THE RISK OF EXPLOSION IN TANKS. (2025). REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 70(2), 165-168. https://doi.org/10.59277/RRST-EE.2025.2.2