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The main objectives of this paper are to learn how to generate impedances on the Smith chart. The Smith diagram is a commonly 
utilized graphical technique for circuit applications with high frequencies, providing an innovative method for visualizing complex 
functions in the complex plane, where impedances are represented, as well as in the polar plane, where reflection coefficients 
(phase and amplitude) are described. Additionally, this allows for the representation of circles with a constant Q (quality factor), 
continuous standing wave ratio (SWR), and stability circles. Through examples given below, we’ve shown how the admittances 
and impedances can be graphically analyzed using the Smith chart.

1. INTRODUCTION 
The Smith diagram, created by Phillip Smith while 

working at Bell Labs, was published in January 1939 in 
Electronics Magazine. 

Although numerous mathematical instruments are 
available for use by microwave engineers, the Smith diagram 
is the most commonly used tool for describing transmission 
lines. The Smith diagram enables the quick solution of 
transmission line problems; however, it can also enhance 
intuitive thinking. For analytical solutions of the issues 
involving transmission lines, in addition to the printed Smith 
diagram, we will need a compass and a protractor. Every 
point on the diagram corresponds to a complex impedance 
[1–7].  

The Smith diagram has been successfully utilized by 
multiple generations of radio frequency designers to perform 
circuit synthesis and analysis, as well as to represent 
impedances. The graphical representation substantially 
reduces calculation effort and allows a built-in impedance 
visualization.  

Today, the Smith diagram is generated using network 
analyzers or computer programs. The use of calculation 
programs has considerably simplified the design process 
using the Smith diagram. However, those who utilize this 
diagram should have a good understanding of impedance, 
admittance, and reflection coefficient, as well as a profound 
knowledge of these representation methods. For this study, 
the Smith chart program, created by Fritz Dellsperger – 
HB9AJY, and the MATLAB RF Toolbox have been used. 

For those having less experience in this field, the use of 
the Smith diagram seems to have a "black magic" allure. 
Nowadays, things aren’t so complex that today various non-
specialists in radio can correctly interpret a Smith diagram 
without specialized training. On this topic, numerous articles 
of popularization appeared in domestic or foreign magazines 
published for radio amateurs. This chapter aims to provide 
an easy-to-understand explanation of this diagram, along 
with a few practical examples, to facilitate a better 
understanding of utilization and data interpretation. 

From a mathematical viewpoint, regarding coordinates 
described by the reflection complex coefficient, the Smith 
diagram represents complex impedances in a 4-D format that 
refers to two-port network parameters (which define the 
input-output voltages and currents relationship). Moreover, 

the 2D representation of impedances refers to the 
visualization of impedances in the complex plane (x-axis 
represents the real part (resistance) and y-axis represents the 
imaginary part (reactance). Unit radius circle in the complex 
plane (Fig.1) represents the definition domain of the 
reflection coefficient for a lossless transmission line. 
Amplitude higher than one for the reflection coefficient in a 
lossy transmission line, because of the characteristic 
impedance characteristic, which needs expansion of the 
Smith chart, [1–19].  

 
Fig. 1 – Reflection coefficient definition range for a lossless line. 

The results of telegraphists' equations show the current 
and voltages analyzed at a specific y distance measured from 
the main load; therefore, we can substitute the ensemble 
made by the load ZS impedance through the section line with 
an impedance, named the input impedance (Fig. 2), [–12]. 

 
Fig. 2 – Complex input impedance definition. 
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where 𝛾#𝑦 is the line propagation constant. 
Dividing the relation (1) by 𝐼$𝑐ℎ(𝛾#𝑦), we obtain: 

 Zi=
U
I

=Z0
Zs+Z0th!γ1y"

Z0+Zsth!γ1y"
. (2) 

The complex coefficient of reflection is utilized in 
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electrical engineering and physics while considering wave 
propagation in a medium containing discontinuity. The 
reflection coefficient is determined by: 

 Γ=
Ui
Ud
	=	%!"#

%$%&
= &$

&'
= &!"#

&$%&
  (3)	

where: 𝑈' is the direct voltage of complex value, equal to 
that incident 𝑈()*; 𝑈( 	is the reverse voltage of complex value, 
equal to that reflected 𝑈+,-; and, 𝐼' is direct current complex 
value, equivalent to incident 𝐼()* and 𝐼( is reverse current of 
complex value, equal to that reflected 𝐼+,-.  

Representing current and voltage as an equation of reverse 
(reflected) and direct units will result in: 

 𝑍( =
%
&
= %'.%$

&'/	&$
=	%'(#.2)

&'(#/	2)
= 𝑍4

(#.2)
(#/	2)

. (4) 

To simplify calculations, complex impedances are 
normalized, i.e., divided by Z0 (𝑧$=𝑍5/Z0). Obviously, the 
characteristic impedance becomes 𝑍4/ 𝑍4= 1 (as a rule, it is 
denoted by Z0 = 50 Ω). 

Defining VSWR as [11–19]: 

 VSWR = 𝜎 = 6()*
6(+,

=	 #.727
#/727

. (5) 

In the following, we will use normalized impedances 
(relative to Z0) and denote them by lowercase. 
Denormalization (returning from normalized to non-
normalized quantities) is achieved by multiplying by the 
normalization impedance. 

Hence, the reflective coefficient Γ(y) can be expressed 
according to the normalized impedance 𝑧 = 𝑧(y) and 
conversely, based on: 

 Γ(𝑦) = 8(9)/#
8(9).#

 and	𝑧(𝑦) = #.Γ(9)
#/Γ(9)

. (6) 

Equations above (6) represent a two-way correspondence 
between the coefficients Γ and z. Therefore, every unique 
spot from complex plane Γ matches to a normalized 
impedance. For instance, we would like to determine and 
represent the normalized impedance z values corresponding 
to various spots from complex plane Γ. Cases of two-way 
correspondence between complex plane	 Γ	 and complex 
impedances are presented in Table 1, [1–19].	

Table 1 
Two-way correspondence between the complex plane	Γ	and the complex 

impedances. 
Case 𝑍 𝑧 Γ 

1 ∞ ∞ 1 
2 0 0 -1 
3 𝑍! 1 0 
4 j𝑍! j j 
5 −j𝑍! -j -j 

 
Therefore, the normalized complex impedances 

correspond biunivocal in the complex plane Γ to five 
different spots (Fig. 3), thus, the five distinct spots from the 
complex plane Γ match biunivocal to five distinct values of 
normalized complex impedances (Fig. 3), [11 – 19]. 

 
Fig. 3 – The correspondence of values of normalized complex impedances 

and points in the complex plane Γ. 

   
Fig. 4 – The matching values of normalized complex impedance and 

complex plane 	Γ points. 

Smith diagram gives a Г representation which determines 
quantities like VSWR or output impedance of DUT (device 
under test). Utilizes a Moebius transformation, representing 
in the complex plane 	Γ, the complex impedance plane: 

 Γ(𝑦) = 8(9)/#
8(9).#

     and      𝑧(𝑦) = #.	2(9)
#/	2(9)

. (7) 

As shown in Fig. 5, the half of the plane having the 
impedance 	Z real part as positive, is transposed inside the 
unitary circle of plane  Γ. 

 
Fig. 5 – Representation of Moebius transformation from complex 
impedance plane to plane  Γ frequently noted as Smith diagram. 

2. GENERATING IMPEDANCES ON THE SMITH 
CHART 

If it is assumed that normalized complex impedances have 
general form of 𝑧 = 𝑟 + j𝑥, and general structure of the 
reflection coefficient is Γ = Γr + jΓx , therefore relations (7) 
are transformed into: 

 Γ+ + 𝑗Γ< =
+/#.=<
+.#.=<

     and    	𝑟 + 𝑗𝑥 = #.2!.=2-
#/2!/=2-

.  (8) 
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where Γ+ = 𝑅,7Γ8, Γ< = 𝐼>7Γ8, 𝑟 = 𝑅,7𝑧8,	  

𝑥 = 𝐼>7𝑧8, 
 

Equations (8) yield:   Γ+ =
+..<./#
(#.+)..<.

,    Γ< =
?<

(#.+)..<.
,  

 𝑥 = ?2-
(#/2!)..2-.

 , 𝑟 = #/2!./2-.

(#/2!)..2-.
. (9) 

The latest relation in equations (9) is modified as follows: 

r=
1-Γr2-Γx2

(1-Γr)2+Γx2
 

Þ	𝑟(Γ+ − 1)? + (Γ+? − 1) + 𝑟Γ<? + Γ<? +
1

1 + 𝑟 −
1

1 + 𝑟 = 0 

Þ >𝑟(Γ+ − 1)? + (Γ+? − 1) +
#
#.+
? + (1 + 𝑟)Γ<?= #

#.+
 

Þ	(1 + 𝑟) @Γ+? − 2Γ+
𝑟

1 + 𝑟 +
𝑟?

(1 + 𝑟)?B +
(1 + 𝑟)Γ<?

=
1

1 + 𝑟 

Þ >Γ+ −
+
#.+
?
?
+ Γ<? = C #

#.+
D
?
. (10) 

The final relation of equation (10) describes a circle 
having the center coordinates 𝐶*	 =	 F

+
#.+

, 0G from complex 

plane 	Γ and the radius #
#.+

 . Therefore, any vertical r = ct, r≥
0, from normalized complex impedances is transforming on 
complex 	Γ plane in a circle situated within IΓI=1 circle or 
equivalent normalized resistances ranging from 0 to ∞ 
change into a system of circles included in the range of IΓI≤1 
reflection coefficients, as shown in Fig. 6. 

 
Fig. 6 – Normalized resistance represented in the complex plane. 

Similarly, processing eq. (9) results the function applying 
the normalized reactance’s plane (x∈ (−∞,+∞) ) in the 
reflection coefficients complex plane: 

𝑥 =
2Γ!

(1 − Γ")# + Γ!#
Û		[𝑥((1 − Γ"#)# + Γ!#) − 2Γ! ± 1]𝑥 = 0	 

															Û		𝑥#[(1 − Γ"#)# + Γ!#] − 2𝑥Γ! + 1 − 1 = 0	 

															Û		[(1 − Γ"#)# + Γ!#] −
2
𝑥 Γ! +

1
𝑥# =

1
𝑥#	 

															Û		(1 − Γ"#)# + /Γ!#
2
𝑥 Γ! +

1
𝑥#0 =

1
𝑥#	 

Þ		(Γ" − 1)# + 1Γ! −
$
!
2
#
= $

!!
	. (11) 

The latest relation in equations (11) describes a circle of 
equal radius to #|<| with center coordinates 𝐶*	 =	 F1,

#
<
G, into 

the complex plane	Γ having the coordinates {Γ+ , Γ<}. Thus, 
whichever vertical x = ct., 𝑥 ∈ (−∞,+∞) from complex 
plane, from complex plane normalized impedances turns into 
the complex plane 	Γ  in an arc situated inner the IΓI=1  circle 

or equivalent normalized reactance’s ranging from - ∞  to + 
∞ change into circles arcs families included in the range of 
IΓI≤1 reflection coefficients, as shown in Fig. 7, [10–19]. 

 
Fig. 7 – Normalized reactance represented in 	Γ complex plane. 

3. GENERATING ADMITTANCES ON THE SMITH 
CHART 

Recall of generic shape of normalized complex 
admittances is 𝑦 = B

B/
= 𝑌𝑍4 = 𝑔 + 𝑗𝑏 = #/2

#.2
, when g 

represents conductance, and b representing susceptance. The 
complex reflection coefficient has the general structure Γ =
Γr + jΓx =

#/9

#.9
. Considering these relationships, the 

following equations are obtained: 

𝑔 + 𝑗𝑏 =
1 − Γ+ − 𝑗Γ<
1 + Γ+ + 𝑗Γ<

 

Þ		𝑔 =
1 − Γ"# − Γ!#

(1 + Γ")# + Γ!#
	Þ 4Γ" +

𝑔
𝑔 + 15

#
+ Γ!# =

1
(𝑔 + 1)# 

𝑏 = /?2-
(#.2!)..2-.

Þ (Γ+ + 1)?+CΓ< +
#
C
D
?
= #

C.
. (12) 

The relationship CΓ+ +
D
D.#

D
?
+ Γ<? =

#
(D.#).

	 describes, in 

the complex plane, a circle having a radius of #
D.#

  and center 

coordinates equal to  𝐶* = F− D
D.#

, 0G. Therefore, any 
vertical g = ct., g³0, from the complex plane of normalized 
admittances is transforming on Γ complex plane in a circle 
which is situated within the IΓI = 1 circle or equivalent to 
normalized conductance ranging from 0 to ∞ change into 
circles families included in the range of IΓI£1 reflection 
coefficients, as shown in Fig. 8. 

 
Fig. 8 – Normalized conductance represented in  Γ the complex plane. 

The equation (Γ+ + 1)? + CΓ< +
#
C
D
?
= #

C.
 describes a 

circle with #|C| radius, and 𝐶* = F−1,− #
C
G center coordinates, 
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in the complex plane Γ. Thus, any vertical b = ct., 𝑏 ∈
(−∞,∞) on the complex plane, from the normalized 
complex admittance plane turns into an arc situated inside 
the IΓI = 1 circle, in the complex plane Γ. Similarly, 
normalized susceptance ranging from −∞ to +∞	change into 
families of arcs of circles included in the range of reflection 
coefficients IΓI ≤ 1, as shown in Fig. 9, [10–18]. 

 
Fig. 9 – Normalized susceptance represented in 	Γ complex plane. 

The basic techniques of the Smith diagram for lossless 
transmission lines consist of: 

• It is known 𝑍(𝑦) and required to be determined 
Γ(𝑦)	or it is known Γ(𝑦) and required 𝑍(𝑦); 

• It is known Γr and 𝑍_𝑅 = 𝑅 needed to be 
determined Γ(𝑦) and 𝑍(𝑦) or given Γ(𝑦) and 
𝑍(𝑦), required Γr	and 𝑍_𝑅 = 𝑅; 

• Find the distances dmin and dmax (minimum and 
maximum positions of stationary voltage wave 
character); 

• Identifying the VSWR  
• It is known 𝑍(𝑦) and required to be determined 

𝑌(𝑦) or it is given 𝑌(𝑦)	and required 𝑍(𝑦). 

4. EXEMPLES 
Let’s find the coefficient of reflection Γ(𝑦), when giving the 

complex impedance Z(y). The method is described below: 
P1. Normalizing the complex impedance, according to the 

equation below: 

𝑧(9) =
E(1)
E/

= F
E/
+ 𝑗 G

E/
= 𝑟 + 𝑗𝑥. (13) 

P2. The normalized constant resistance circle r (given), is 
represented in the complex plane Γ(𝑦); 
P3. The arch correspondent to normalized constant x reactance is 
generated on complex plane	Γ (y); 
P4. The curves intersection at steps P2 and P3 indicates complex 
coefficient of reflection Γ (y) sought. The Smith diagram gives 
immediately the mode and phase angle of Γ (y). 

Let's find now Γ (y) when  𝑍 (y) = 25 + j100, 𝑍4=50Ω. The 
method for identifying the Γ(𝑦) reflection coefficient, given 
𝑍(𝑦), is shown in Fig. 10. 

Let’s also find Γ(𝑦), respective Z(y), when y = 0.18λ 
where 𝑍$ = 25 + 𝑗100 is load impedance and characteristic 
impedance T𝑍4T = 𝑍4 =50Ω are given. The method for 

identifying Z(y) complex impedance and Γ(𝑦) reflection 
coefficient is described in Fig. 11.  

 

 
Fig. 10 – Method description of identifying Γ(𝑦), having 𝑍(𝑦) = 25 +

j100 with 1𝑍!1 = 𝑍! = 50Ω. 

 
Fig. 11 – Method of identifying Z(𝑦) and Γ(𝑦), having y = 0.18λ, load 

impedance 𝑍" = 25 + j100	and characteristic impedance 

 5𝑍#5 = 𝑍#= 50Ω are given.  

Among the lossless transmission line, we have a constant 
reflection coefficient for a specified load, because: 

 IΓ(𝑦)I = TΓ$ 𝑒𝑥𝑝 C−𝑗2𝛾H𝑦DT = IΓ$I. Hence, a circle 
whose origin coincides with radius IΓ$I		define all possible 
reflections among the line of transmission in the complex 
coordinate plane {Γr, Γx}. The impedance values of the line at 
any distance can be determined when the constant mode 
circle of the reflection coefficient is known and described 
through the Smith chart.  

The steps of the algorithm for determining distances dmax 
and dmin when given Γ$ and Zs are: 

P1. The reflection coefficient Γ$ or normalized complex 
load impedance zs shall be determined on the Smith chart.  

P2. Represent the circle corresponding to the coefficient 
of reflection of constant mode IΓ(𝑦)I = TΓ$T on the Smith 
diagram. This circle will intersect the reflection coefficients 
real axis at two points identifying dmin (when Γ(𝑦) it is real 
negative) and dmax (when Γ(𝑦) it is real positive). 

P3. Smith diagram gives a horizontal gradation 
considering normalized distances in relation to λ wavelength 
can be directly interpreted. Angles, among real axis, 
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respective vector Γ$, give also a path for calculating the 
distances dmax and dmin. 

Finding the distances dmax and dmin, when the load 
impedances are known 𝑍$# = 25 + j100,	𝑍$? = 25 − j100 
and the characteristic impedance T𝑍4T = 𝑍4= 50Ω. The 
procedure for determining the distances dmax and dmin is 
described in Fig. 12, a respectively b. 

 
(a) 

 

 
(b) 

Fig. 12 - Description of the procedure for determining distances dmax  and 
dmin, when giving load impedances and characteristic impedance Ω:  

a) For 𝑍"$ = 25 + j100; b) for For 𝑍"% = 25 − j100. 

Γ$	 and Z$ is also given and asked to determine the VSWR, 
which is determined by equation (5). 

The complex impedance normalized at a maximum 
distance of the stationary wave model is defined below: 

z(dmax)=
1+7Γ(dmax)7
1-7Γ(dmax)7

=
1+IΓsI

1-IΓsI
=VSWR.  (14) 

This size is always real ≥ 1. VSWR is easily identified on 
the Smith diagram by interpreting the normalized 
impedance's real value at the dmax distance, considering that 
it is real and positive. 

The algorithm for determining VSWR when known Γ$	and 
𝑍s has the following steps: 

P1. The reflection coefficient corresponding to the load	Γ$ 
and the normalized complex load impedance zs shall be 
determined on the Smith diagram.  

P2. Draw the circle corresponding to the constant modulus 
of the coefficient of reflection IΓ(𝑑)I = IΓ$I. 

P3. Look for the circle intersection with the actual axis for 
the reflection coefficient (corresponding to dmax distance of 
the transmission line); 

P4. Normalized constant resistance circle is passing also 
through this point, reading and interpolating the normalized 
resistance value to find VSWR value. 

The method to determine the value of VSWR for distances 
dmax and dmin, when the load impedances are known, and 
character impedance = 50 Ω. The method for finding the value 
of the ratio of stationary wave voltages when giving load 
impedances 𝑍$# = 25 + j100, 𝑍$? = 25 − j100 and 
characteristic impedance T𝑍4T = 𝑍4= 50Ω, is shown in Fig. 13. 

 
Fig. 13 – Procedure description to determine the Stationary Wave Voltage 

value. 

Determination of complex admittance Y(d) when complex 
impedance Z(d) is known. Reminding that normalized 
complex impedance 𝑧(𝑑) and normalized complex 
admittance 𝑦(𝑑), for any distance d on the transmission line, 
are given by the expressions: 

𝑧(𝑑) = #.Γ(')
#/Γ(')

 and 𝑧(𝑑) = #.Γ(')
#/Γ(')

. (15) 

Because	Γ C𝑑 + K
L
D = −Γ(𝑑)  

 Þ𝑧 C𝑑 + K
L
D =

#.Γ!'.34"

#/Γ!'.34"
= #/Γ(')

#.Γ(')
= 𝑦(𝑑). (16) 

The relation (17) is true only for normalized impedances 
and admittances. Their values are: 

𝑍 C𝑑 + K
L
D = 𝑍4 ⋅ 𝑧 C𝑑 +

K
L
D ;	𝑌(𝑑) = 𝑌4 ⋅ 𝑦(𝑑) =

9(')

E/
.  (17) 

where 𝑌4 =
#
E/

 is representing the characteristic admittance 
of the transmission line. 

Finding complex load admittance Yd, when the complex 
load impedance is 𝑍$ = 25 + j100, also the characteristic 
impedance I𝑍4I = 𝑍4 = 50Ω. The procedure for 
determining the complex load admittance Y(d) is represented 
in Fig. 14.  

On the diagram of complex impedance (Z = R + jX), the 
valid reflection coefficient is represented all the time by the 
vector corresponding to the normalized complex impedance 
(z = r + jx). Diagrams specially prepared for complex 
admittances (Y = G + jB) are modified in such a way as to 
give the correct coefficient of reflection in correspondence 
with the complex admittance generated. 
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Fig. 14 - The procedure for determining the complex admittance of the 
load when giving the complex load impedance and the characteristic 

impedance. 

Because the associated impedance and admittance have 
different positions on the Smith diagram, their imaginary 
elements always have different signs (see Fig. 15). Hence, a 
positive reactance corresponds to a negative susceptance. 
However, a negative reactance corresponds to a positive 
susceptance, as shown in Fig. 15. 

 
Fig. 15 - Distribution of inductive and capacitive susceptance on the Smith 

diagram. 

5. CONCLUSIONS 
The Smith diagram is helpful in various applications, from 

adapting the impedances of a small-signal amplifier to 
minimize noise, to performing a load-pull analysis for a power 
amplifier. In the latter case, a power amplifier is forced to work 
on various impedances, at which the phase is rotated 360 
degrees. The output power is then displayed on the Smith 
diagram, allowing the optimal output impedance for that 
transistor/amplifier to be determined to achieve maximum 
power, maximum linearity, or maximum efficiency, as 
appropriate. 

The usefulness of the Smith diagram is not limited to 
professionals in the field but also extends to radio amateurs 
who are increasingly using modern instruments for analyzing 
circuits or antennas. Whether it is amateur radio antenna 
analyzers such as SARK 110, Rig Expert AA55, KC901 or a 
mini-VNA (Vector Network Analyzer), the correct 
understanding of the Smith diagram usage allows the user to 
see precisely what the nature of the impedance is and 
implicitly which is the real (resistive) and imaginary (reactive) 

component. From this, conclusions can be drawn about 
whether the antenna is too short or too long, as well as findings 
on how to build the adaptation circuit. 

The chart provides a robust and accurate representation of 
the passive impedances (those with a positive real part) from 
0 to ∞. Negative real part impedances, for example the 
reflection amplifier or other device as active, will appear outer 
from the Smith diagram. It is nice to observe, especially in the 
field of radio frequency and microwave studies, because 
mapping transforms impedances or acceptances (y = 1/z) into 
reflective factors and conversely. The conversion among 
impedance, respective intake in the diagram would be mainly 
simple: Г(y =  1/z) = -Г(z); “Text”. 
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