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This paper proposes a novel stochastic optimization approach named optimization by morphological filter (OMF) for solving the 
combined economic emission dispatch (CEED) problem with the valve point effect and multiple equality and inequality 
constraints. Four standard test systems, with and without transmission losses, are optimized to demonstrate the performance of 
OMF. Comparing the experimental results with various methods reported in the literature proves the high quality of OMF for 
solving CEED problems for small and large-scale systems.  
 

1. INTRODUCTION 
In response to the energy demand, which is growing, 

while reducing greenhouse gas emissions, many researchers 
promoted the penetration of renewable energies into the 
electricity production sector.  To maximize the generated 
power of the system, the author in [1] utilized a multilevel 
inverter for grid-connected solar systems. Kacimi et al. [2] 
implemented a new combined method for tracking 
photovoltaic systems' global maximum power point. Dekali 
et al. [3] report the experimental implementation of the 
maximum power point of photovoltaic systems. Other 
researchers believe that renewable energy lacks coherence 
and depends upon weather conditions, even though it is 
cheap to produce and free of pollutants. They, therefore, 
concentrated on producing energy from fossil fuels while 
minimizing the cost and emissions of hazardous gases. This 
consists of the combined economic and emission dispatch 
problem (CEED). Since the efficiency of metaheuristic 
approaches has been proved, the researcher’s interest has 
been turned to employing them for solving CEED problem. 

Abido applied evolutionary algorithms such as Pareto 
genetic algorithm (NPGA) [4], non-dominated sorting 
genetic algorithm (NSGA) [5], and strong Pareto 
evolutionary algorithm (SPEA) [6] to solve CEED problem. 
Alsumait et al. [7] presented a hybrid algorithm consisting 
of a genetic algorithm (GA), pattern search (PS), and 
sequential quadratic programming (SQP) to optimize fuel 
cost and emission functions. The problem was also solved 
using a fuzzy-based bacterial foraging algorithm (MBFA) 
[8] and fuzzy dominance sorting bacterial foraging (FSBF) 
[9], which were developed based on the bacterial foraging 
algorithm. Differential evolution [10], evolutionary 
algorithm based on decomposition [11], and summation-
based multi-objective differential evolution algorithm 
(SMODE) [12] were successfully applied to deal with 
CEED problem. Roy et al. [13] added the oppositional-
based learning concept into the original TLBO [14] to 
accelerate the convergence rate to sort out the nonlinear 
multi-objective CEED problem, while Zou et al [15] used a 
new mechanism to guide the search process of the 
traditional particle swarm algorithm. Among others, 
opposition-based greedy heuristic search [16], backtracking 
search algorithm [17], modified artificial bee colony [18], 
modified NSGA-II algorithm [19], and gravitational search 
algorithm [20] are also recent metaheuristics that have been 

used to deal with the CEED problem. Maamri et al. [21] 
showed that GWO outperforms PSO for the economic 
dispatch of a hybrid system, and Kherfane et al. [22] used 
an intelligent algorithm to deal with CEED problem. 

This paper suggests the application of a new stochastic 
algorithm named optimization by morphological filter (OMF) 
proposed by Khelifa and Belmadani [23] to solve CEED 
problem. The method is inspired by functional erosion, a 
morphological transformation mainly used in image 
processing. It corresponds mathematically to finding the 
minimum pixel combination and a kernel function 
(structuring element) [24]. The CEED problem is formulated 
by a single objective function using the price penalty factor 
approach [25]. OMF is investigated to solve four test systems 
with valve point effect while satisfying total load demand and 
system constraints. The results have been compared with the 
recent methods available in the literature. The remainder of 
this paper can be summarized as follows: the mathematical 
model of CEED is presented in Section 2. Section 3 explains 
the weighted sum method. The concept of optimization by 
the morphological filter is explained in Section 4. 
Simulations and results of the test systems are provided in 
section 5. Section 6 concludes the paper.  

2. CEED PROBLEM FORMULATION 
The economic emission dispatch problem is basically 

two objective optimization problem; the first revolves 
around minimizing the fuel cost in the power system and 
the second aims at the minimization of pollutants emission. 
Furthermore, it must satisfy many equality and inequality 
constraints.  

2.1 FUEL COST FUNCTION 
The fuel cost function is the sum of the fuel cost of each 

generator in the system with considering the valve point 
effect. It can be expressed [26] as:  

 
, (1) 

where ai, bi, ci represent the cost coefficients, ei and fi reflect 
the effect of valve point in the ith generator. Pi is the power 
output of unit i and Pimin is its lower generation limit.  

2.2 EMISSION FUNCTION 
The emission function of the atmospheric pollutants 

caused by energy production can be modeled [27] as: 

 

C = ai +bi
i=1

n

å Pi + ciPi
2 + ei sin fi Pimin + Pi( )( )
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 , (2) 

where αi, βi, δi, γi, μi are the emission coefficients of ith 
generator.  

2.3 CONSTRAINTS 
The power generated must equal the sum of the power 

demand PD and power losses PL. It is represented by 

 , (3) 

and the power losses can be calculated using Kron’s loss 
formula [28]: 

 , (4) 

where Pi and Pj are the real power injections at ith, and jth 
buses and Bij, B0i, and B00 are loss-coefficients of the 
transmission loss formula. 

The power output of each generator must be delimited by 
its minimum and maximum power permitted, and it may 
mathematically be expressed by: 
 . (5) 

3. WEIGHTED SUM METHOD 
Cost and emission minimization are two dissimilar 

problems with different dimensions ($/h and ton/h) and are 
contradictory. So, it is not possible to combine them into a 
single objective. For this reason, many researchers [29–31] 
adopt an unorthodox optimization technique; both objective 
functions are multiplied by weight factor w included between 
0 and 1. Also, the emission function is multiplied by a price 
penalty factor σ computed as 
 , (6) 

 . (7)  

4. OPTIMIZATION BY MORPHOLOGICAL FILTER 
OMF algorithm mimics the concept of functional 

erosion, a morphological operation used in image 
processing. It consists of probing the input image with a 
structuring element creating an output image of the same 
size. The value of the output pixel is the minimum value of 
all pixels about the structuring element [32]. The structuring 
element used has an important impact on erosion results; 
the output image depends essentially on its size and shape. 
OMF filter is like the traditional structuring element used in 
image processing, where the center determines the fitness 
value of the objective function, and the branches are 
randomly generated neighbors (Fig.1).  

 
Fig. 1 – 2D Structuring element Vs OMF Filter 

In addition to the search space size R, dimension D, and 

stop criterion ε. OMF operates by launching Nfil filters in 
the search space. Each filter has a size fil_size, a center C 
and each center has several neighbors (Nneigh). The 
algorithm steps can be detailed below, and the analytical 
model is explained in Fig. 2. 

Step 1: Initialize the filter centers randomly.  
Initialize  

Step 2: Generated variables are normalized using (8) to 
range them into the search space R and to assure that the 
power output of each generator is within its limits 

 . (8) 

Step 3: each filter center explores its neighborhood using 
randomly one of two options in (9). Equation (9.1) serves to 
enhance the exploring scale by choosing randomly to search 
around the actual solution (a = 0), left of the actual solution 
(a= -1) or right (a = 1) while (9.2) is used to explore 
unvisited areas 

  

We note here that f denotes the current filter number, and 
Neighi indicates its ith neighbor. 

Step 4: Calculate F(C’), F(Neigh) and store the position 
and fitness value of the best neighbor for each filter f if it 
exists 
 . (10) 

Step 5: The neighbor with the best fitness is selected to 
replace the original filter center (11.1), assuming that this 
new filter center's neighborhood may be better than the 
current solution's. Otherwise, the actual filter center is 
maintained, and its filter size is reduced to explore a closer 
neighborhood (11.2)  

  (11) 

Filter size is reduced by considering the previous current 
filer reduction kf, and c is a constant fixed at 1.001. 

Step 6: Register the position and the objective function 
value of the filter center that have the best fitness at this 
iteration and repeat 2-5 until the stop criterion is met (all 
filters size ≤ ε). 
 
Set parameters: R, D, ε, Nfil, fil_size, Nneigh; 
Begin 
 Initialize Cf (Xf,Yf,..); 
 // f=1.. Nfil 

 

REPEAT 
//Explore the neighborhood by randomly perform one of the following two 
operations for each of the space’s dimension  
// a is randomly chosen in {-1, 0, 1} 
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F = w *C + 1-w( )*s * E

 

s =
Ci (Pimax )
Ei (Pimax )

 

C f X f ,Yf ,...( )

 

C f
' X f ,Yf ,...( )=

C f X f ,Yf ,...( )- Pimin
Pimax - Pimin

* R

 

Neighi (Xi ,Yi ,...)

C f
' X f ,Yf ,...( )+ a * fil _ size f (9.1)

or
Random * R(9.2)

ì 

í 
ï ï 

î 
ï 
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(9)

 

Best _ pos f (X,Y ,...) = Neigh f ,i Xi ,Yi ,...( )

 

C f (X f ,Yf ,...) = Best _ pos f (X,Y ,...)
   or

Fil _ size f =
R
ck f

ì 

í 

ï 
ï 

î 

ï 
ï 

 

Fil _ size f = R;

 

C f
' X f ,Yf ,...( )=

C f X f ,Yf ,...( )- Pimin
Pimax - Pimin

* R;

 

Neigh f ,i (Xi ,Yi ,...) =C f
' X f ,Yf ,...( )+ a * fil _ size f ;

 

Neigh f ,i (Xi ,Yi ,...) = Random * R;

 

Best _ pos f (X,Y ,...) = Neigh f ,i (Xi ,Yi ,...);

0 0 1 0 0 
0 1 1 1 0 
1 1 1 1 1 
0 1 1 1 0 
0 0 1 0 0 

Diamond-Shaped Structuring element              OMF Filter  
       : Structuring element center       : Filter center         : Neighbors  
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 If  then   

   

Else     

Until  // f = 1... Nfil 
Sort all the filters by fitness value and deduce the global optimum; 
End. 

Fig. 2 – Pseudo code of OMF algorithm  

6. RESULTS AND DISCUSSION 
To validate the proposed approach's performance and 

assure its optimization efficiency, OMF is implemented to 
solve the CEED problem with the valve point effect. Delphi 
software is used to simulate the CEED problem, and it is 
implemented on a personal computer I3, with 1.7 GHz and 
4 GB RAM. Four standard test systems with and without 
transmission losses are optimized to demonstrate the 
performance of OMF. We optimize each test system's fuel 
cost objective and emission function by fixing the weight w as 
1 or 0, respectively, in (6). Here w is equal to 0.5 for CEED 
problem to give the same priority to both objective functions. 
C denotes the cost minimization, E is the emission function, 
and F is the total cost function for the CEED problem.  

The abbreviation NA corresponds to” Not available”. We 
note here that R is fixed at 100 and the other Parameters are 
fixed after many tests and we have opted for those which 
give the best results in term of objective function and 
computational time.   

6.1 TEST SYSTEM 1 
The problem evaluated in this case is the standard IEEE 

30-bus system with six-generators. The generation capacities 
as well as the data of the optimization problem are taken 
from [32]. Moreover, the system base is 100 MVA and the 
total system demand for the 21 load buses is 2.834 (per unit). 
In this case, we opt for ε = 10-9, Nfil = 5 and neighbors 
Nneigh = 2. Also, the emission equation is modestly different 
from (2) and it can be defined as: 

 . (12)  

The results of the proposed approach are compared with 
those of NGSAII+DCD [19], SMODE [12], NGSAII [5] 
and MOEA/D [11]. Tables 1 and Table 2 show that the 
success rate of OMF is quite high for both cost and 
emission minimization within a time interval of 2 to 3 
seconds. Figure 3 summarizes the results provided by OMF 
for solving CEED problem compared with NPGA [4], 
SPEA [6], MBFA [8] and FSBF [9]. OMF achieves the 
lower total cost function F = 1491.415 (C = 624.886, E = 
0.197) compared to its competitors. 

Tabl 1 
Cost minimization of test system 1 

Unit 
 

NGSAII+ 
DCD[19] 

SMODE 
[12] NGSAII [5] MOEA/D 

[11] OMF 

1 0.114 0.173 0.194 0.179 0.104 
2 0.303 0.356 0.332 0.371 0.286 
3 0.604 0.740 0.748 0.694 0.594 
4 0.980 0.595 0.597 0.591 0.997 
5 0.516 0.591 0.591 0.589 0.517 
6 0.352 0.402 0.396 0.435 0.358 
L 0.022 0.035 0.035 0.029 0.022 
C 608.128 619.070 619.190 619.530 605.135 
E 0.220 0.203 0.215 0.202 0.222 

T NA NA NA NA 2.684 

Table 2 
Emission minimization of Test system 1 

Unit NGSAII+ 
DCD[19] 

SMODE 
[12] NGSAII [5] MOEA/D 

[11] OMF 

1 0.410 0.398 0.409 0.406 0.415 
2 0.461 0.460 0.469 0.459 0.460 
3 0.553 0.542 0.542 0.550 0.541 
4 0.389 0.405 0.391 0.385 0.399 
5 0.545 0.545 0.540 0.545 0.542 
6 0.516 0.514 0.514 0.518 0.514 
L 0.033 0,0254 0.027 0,02478 0.037 
C 645.647 635.990 644.970 644.980 646.073 
E 0.194 0.194 0.194 0.194 0.194 
T NA 59.73 69.98 NA 3.292 
 

 
Fig. 3 – Fuel cost and emission minimization of test system 1 

6.2 TEST SYSTEM 2 
Six unit’s system with transmission losses and load 

demand equal to 1200 MW is considered in this case. The 
input data are taken from [20]. The loss coefficient matrix 
can be found in [33]. OMF parameters are fixed as follow: 
ε = 10-12, Nfil = 3, Nneigh = 2. Table 3 and Table 4 outline 
the fuel cost and emission minimization respectively.  

The results obtained are compared with those of TLBO 
[14], QTLBO [13], DE [10] and NGPSO [15]. OMF 
provides very competitive result regarding the minimization 
of fuel cost and emission minimization separately. 
Furthermore, it can surpass TLBO, QTLBO, MODE [31] 
and OGHS [14] for solving CEED problem (F = 
125382.204, C = 66008.623, E = 1241.370) with the best 
computational time T = 1.139 (Fig. 4) which allows us to 
recommend OMF for small-scale CEED problems.  

Table 3 
Cost minimization of Test system 2 

Un
it 

TLBO 
[14] 

QTLBO 
[13] 

DE [10] NGPSO 
[15] 

OMF 

1 80.617 79.555 84.435 80.755 80.756 
2 92.406 88.898 93.364 87.691 87.689 
3 210.000 210.000 225.000 210.000 210.000 
4 225.000 224.994 210.000 225.000 225.000 
5 324.986 324.971 325.000 325.000 325.000 
6 320.163 324.998 315.000 325.000 325.000 
L 53.172 53.172 NA 53.446 53.445 
C 64032.00 63977.00 64083.00 63975.77 63975.561 
E 1353.100 1360.100 1345.600 NA 1360.065 
T 2.09 1.74 8.32 NA 2.433 

Table 4 
Emission minimization of test system 2 

Unit  TLBO [14] QTLBO [13] DE [10] NGPSO [15] OMF 
1 125.000 125.000 125.000 125.000 124.909 
2 150.000 150.000 150.000 150.000 150.000 
3 201.466 201.268 201.182 201.268 202.831 
4 199.280 199.370 199.545 199.369 199.385 
5 287.963 287.971 287.619 287.971 286.422 

 

Best _ pos f (X,Y ,...) ¹{ }

 

C f (X f ,Yf ,...) = Best _ pos f (X,Y ,...);

 

Fil _ size f =
R
ck, f

;

 

Fil _ size £ e,

 

E = 0.01(a i +biPi + g iPi
2 + µ i exp d iPi( ))[ ]

i=1

n

å
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6 286.444 286.550 286.814 286.550 286.514 
L 50.154 50.159 50.160 50.159 50.064 
C 65992.00 65993.00 65991.00 NA 65991.215 
E 1240.700 1240.600 1240.700 1240.7 1240.636 
T 1.97 1.68 8.56 NA 1.139 

 

 
Fig. 4 – Fuel cost and emission minimization of Test system 2 

6.3 TEST SYSTEM 3 
This case studies a ten-unit system with PD = 2000MW. 

Data units and the loss coefficients are as in [13]. This test 
case is investigated using a precision ε = 10-9, Nfil =10 and 
Nneigh is set to 3. Comparisons of best compromising 
results achieved by TLBO [14], QTLBO [13], OGHS [16] 
and DE [10] illustrated in Tables 5 and 6.  

Table 5 
Cost minimization of test system 3 

Unit  TLBO [14] DE [10] OGHS 
[16] 

QTLBO 
[13] 

OMF 

1 55.000 55.000 55.000 55.000 55.000 
2 80.000 79.806 80.000 79.999 80.000 
3 105.962 106.962 106.992 107.923 105.950 
4 99.932 102.831 100.535 98.648 99.983 
5 80.642 82.242 81.445 82.018 82.809 
6 85.788 80.435 83.067 83.488 82.032 
7 300.000 300.000 300.000 300.000 300.000 
8 340.000 340.000 400.000 340.000 340.000 
9 469.698 470.000 470.000 469.971 470.000 
10 469.999 469.898 469.898 469.999 470.000 
C 87.021 87.173 146.935 87.045 85.774 
E 111500 111500 111490 111498 111417.293 
F 4563.3 4581.0 4572.274 4568.7 4586.635 
T 3.23 9.42 NA 2.98 2.913 

Table 6 
Emission minimization of Test system 3 

Unit  TLBO [14] DE [10] OGHS [16] QTLBO [13] OMF 
1 55.000 55.000 55.000 55.000 55.000 
2 80.000 80.000 80.000 80.000 80.000 
3 81.126 81.134 80.592 81.126 73.681 
4 81.363 81.364 81.023 81.364 82.926 
5 160.000 160.000 160.000 160.000 160.000 
6 240.000 240.000 240.000 240.000 240.000 
7 294.479 292.743 294.507 294.479 293.914 
8 297.244 299.121 297.262 297.244 297.658 
9 396.804 394.515 396.735 396.804 396.051 
10 395.579 395.579 395.572 395.579 395.883 
C 81.595 79.456 80.690 81.595 75.111 
E 116412 116400 1164100 116412 116051,52 
F 3932.200 3932.400 3932.242 3932.200 3931.017 
T 3.11 8.56 NA 2.86 2.262 

Minimum fuel cost and minimum emission obtained by 
OMF for this test case are 111417.2927 ($/h) and 
3931.01714 (ton /h) respectively which is much lesser than 
its competitors. Figure 5 recapitulates the outputs given by 
OMF for CEED problem as well as TLBO [14], QTLBO 
[13], OGHS [16] and GSA [20]. OMF produced a better 

optimal solution (F = 216143.454, C = 116135.606, E = 
3960.676) with a computing time less than 3 seconds. 
Moreover, the equality and inequality constraints are 
respected. 

 
Fig. 5 – Fuel cost and emission minimization of Test system 3 

6.4 TEST SYSTEM 4 
This case considers 40 generators as a large-scale power 

system. PD = 10500 MW, the cost and emission functions 
coefficients are taken from [15]. OMF parameters are fixed 
as follows: ε =10-59, Nfil = 2, Nneigh = 2. Table 7 and 8 
highlight the outputs for the cost and emission 
minimization.  

Table 7 
Cost minimization of Test system 4 

Unit  TSAGA 
[34] 

TLBO [14] DE [10] GA-PS-SQP 
[7] 

OMF 

1 114.000 110.868 110.800 110.970 113.355 
2 111.040 111.068 110.800 111.020 113.355 
3 97.300 97.633 97.400 120.000 97.398 
4 179.600 179.774 179.733 179.730 179.733 
5 90.721 88.272 87.800 88.270 91.270 
6 140.000 140.000 140.000 140.000 139.965 
7 260.060 259.630 259.600 259.600 259.664 
8 285.870 284.591 284.600 284.600 284.600 
9 284.770 284.671 284.600 284.600 284.606 
10 130.000 130.096 130.000 130.000 130.000 
11 94.000 168.801 94.000 168.800 94.000 
12 168.380 168.352 94.000 168.800 168.809 
13 214.450 304.425 214.760 214.760 125.000 
14 394.010 214.786 394.279 394.280 394.253 
15 394.270 484.177 394.279 304.520 394.307 
16 304.570 304.844 394.279 304.520 394.283 
17 489.280 489.198 489.279 489.280 489.285 
18 489.560 489.467 489.279 489.280 489.283 
19 511.290 511.451 511.279 511.280 511.300 
20 511.270 511.289 511.279 511.280 511.284 
21 523.230 523.244 523.279 523.280 523.288 
22 523.630 523.275 523.279 523.280 523.290 
23 523.820 523.400 523.279 523.280 523.296 
24 523.620 523.329 523.279 523.280 523.263 
25 523.330 523.382 523.279 523.280 523.271 
26 523.680 523.275 523.279 523.280 523.291 
27 10.000 10.068 10.000 10.000 10.000 
28 10.000 10.018 10.000 10.000 10.000 
29 10.160 10.103 10.000 10.000 10.000 
30 87.870 90.550 87.800 88.660 91.249 
31 190.000 190.000 190.000 190.000 189.925 
32 190.000 190.000 190.000 190.000 189.994 
33 190.000 190.000 190.000 190.000 189.964 
34 165.230 164.902 164.800 164.800 164.831 
35 200.000 164.861 19.398 200.000 199.861 
36 200.000 164.921 200.000 200.000 199.963 
37 110.000 110.000 110.000 110.000 109.789 
38 110.000 110.000 110.000 110.000 109.796 
39 110.000 110.000 110.000 110.000 109.903 
40 510.980 511.279 511.279 511.280 509.276 
C 121463.070 121685.000 121837.000 121458.140 121443.34

1 
E NA 364593.6 374790.5 NA 358843.17

5 
T NA 4.83 13.25 46.98 75.473 

Table 8 
Emission minimization of Test system 4 
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Unit BSA [17] TLBO [14] DE [10] MABC [18]  OMF 
1 114.000 110.868 114.000 114.000 114.000 
2 114.000 114.000 114.000 114.000 114.000 
3 120.000 120.000 120.000 120.000 119.595 
4 169.368 169.276 169.293 169.368 169.595 
5 97.000 97.000 97.000 97.000 96.384 
6 124.257 124.291 124.283 124.257 124.550 
7 299.711 299.718 299.456 299.711 299.036 
8 297.915 297.922 297.855 297.914 297.385 
9 297.260 297.257 297.133 297.259 297.602 
10 130.000 130.201 130.000 130.000 130.000 
11 298.410 298.388 298.598 298.409 298.819 
12 298.026 298.268 297.723 298.025 298.701 
13 433.558 433.566 433.747 433.556 432.999 
14 421.728 421.311 421.953 421.727 421.133 
15 422.780 422.576 422.628 422.778 422.350 
16 422.780 422.458 422.951 422.778 422.000 
17 439.413 439.516 439.258 439.412 439.961 
18 439.403 439.410 439.441 439.402 439.178 
19 439.413 439.295 439.491 439.412 439.843 
20 439.413 439.738 439.619 439.412 439.782 
21 439.446 439.543 439.225 439.445 439.696 
22 439.446 439.536 439.682 439.445 439.463 
23 439.772 439.218 439.876 439.771 439.209 
24 439.772 439.924 439.894 439.771 439.300 
25 440.112 440.380 440.440 440.111 440.787 
26 440.112 439.994 439.841 440.111 440.466 
27 28.994 28.993 28.776 28.993 29.125 
28 28.994 29.012 29.075 28.993 29.600 
29 28.994 29.060 28.904 28.993 28.698 
30 97.000 97.000 97.000 97.000 97.000 
31 172.332 172.306 172.404 172.331 172.388 
32 172.332 172.346 172.396 172.331 172.764 
33 172.332 172.464 172.314 172.331 172.645 
34 200.000 200.000 200.000 200.000 200.000 
35 200.000 200.000 200.000 200.000 200.000 
36 200.000 200.000 200.000 200.000 199.930 
37 100.838 100.947 100.877 100.838 100.663 
38 100.838 100.825 100.900 100.838 100.824 
39 100.838 100.890 100.778 100.838 100.644 
40 439.413 439.375 439.189 439.412 439.866 
C 129995.271 129952.000 129961.000 129990.000 129953.605 
E 176682.265 176683.500 176683.500 176679.424 176436.723 
T NA 4.63 14.09 NA 5.944 

It can be observed that the proposed approach provides 
better results compared with TSAGA [34], TLBO [14], DE 
[10], and GA-PS-SQP [7] in terms of cost minimization. 
OMF can achieve a difference of 14.79955 $/h compared 
with GA-PS-SQP, which is equivalent to 355.7895$ per 
day. Besides, OMF can achieve very competitive results in 
terms of emission minimization compared with BSA [17], 
TLBO [14], DE [10], and MABC [18]. It overcomes 
MABC with 242.7009 tons/h. Figure 6 outlines the 
optimum solution for the CEED problem using OMF (F = 
168384.584, C = 129387.030, E = 80251.070) compared 
with other techniques reported in the literature as TLBO, 
QTLBO, MODE, and GSA.  

 

 
Fig. 6 – Fuel cost and emission minimization of test system 4 

7. CONCLUSIONS 
This paper applies the optimization by morphological 

filter algorithm (OMF) to solve the combined economic 
emission dispatch. Four test systems were investigated to 

illustrate the performance of the proposed approach 
compared with other methods reported in literature. The 
numerical results obtained show that OMF is efficient for 
solving small scale as well as large scale CEED problems in 
short span of time. It can satisfy all system constraints with 
or without valve point effect, loss or lossless. Since OMF is 
based on morphological filters, its parameters are easy to 
understand and to adjust. OMF is suitable to solve other 
several optimization problems. 
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