
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.

Vol. 69, 3, pp. 347–352, Bucarest, 2024

1 Doctoral School on Automatic Control and Computers, National University of Science and Technology “Politehnica” Bucharest,

Bucharest, Romania
2 National University of Science and Technology Politehnica Bucharest, Bucharest, Romania (Corresponding).

 Emails: cristian.cazan1997@outlook.com, cristian.cazan2908@upb.ro, constantinvmarian@gmail.com , constantin.marian@upb.ro

DOI: 10.59277/RRST-EE.2024.69.3.16

AUTOMATION IMPROVEMENT FOR GIS-BASED APPLICATIONS

DEPLOYMENT IN FAST-GROWING HIGH SCALABILITY

DATA-ROOMS

CRISTIAN ALEXANDRU CAZAN1, CONSTANTIN VIOREL MARIAN2

Keywords: Automation; Software deployment; Geographic information system (GIS) conversion; Software resources

configuration.

This paper presents the viability and importance of automation in deploying and managing software systems to reduce costs.

Automation allows for optimizing time spent on resource deployment and configuration and simplifying the upgrade process. A

real-world geographic information system (GIS) project illustrates these improvements by automating WGS84 & STEREO70

conversion modules for software systems.

1. INTRODUCTION

The Industry 4.0 concept introduces smart manufacturing

through the digital transformation of manufacturing

companies. The introduction of automation, the Internet of

Everything, and education significantly impact increased

productivity and flexibility [1]. The evolution of the Internet

of Things (IoT) concept over time [2] is part of the Internet

of Everything (alongside the Internet of Things, Internet of

Data, Internet of Services, and Internet of People).

Industry 4.0 impacts significant life aspects, such as

communication, social media, management, and digital

learning methods [3].

Software deployment automation has become essential

with the continuous evolution of modern software and

modern software development.

The increasing complexity of software and rising

cybernetic threats compel companies to invest in processes

that increase the efficiency of software development and

deployment in fast-paced, real-time environments.

Modern software has become highly complex, and with

the advent of cloud computing and cloud providers, it has

grown to leverage the dynamic and scalable infrastructures

those technologies provide. Companies begin to migrate

their products to the cloud. They must adapt their

deployment and provisioning processes to leverage this new

environment, using load-balancing algorithms to distribute

the workload evenly between virtual machines and obtain

better performance [4].

As a result, infrastructure can be provisioned and de-

provisioned dynamically. Owing to this newfound agility,

new efficient ways to manage the infrastructure have become

imperative for any engineering department and its respective

companies. Manual, one-off configurations are proven to be

inefficient but also error-prone and time-consuming,

resulting in time lost that could be better spent developing

and improving the product itself.

Infrastructure as Code (IaC) [5] has emerged as a response

to these needs and challenges. IaC is a modern practice in

software development that allows developers and operations

teams to manage the provisioning process and the

infrastructure through readable definition files rather than

physical hardware or interactive tools. Specifically, it treats

infrastructure as software, enabling versioning, testing, or

testing automation [6] and deployment that follows the same

rigor as normal application software.

2. ARCHTERR PROJECT

ArchTerr [7] is a geographic information system (GIS)-based

integrated cultural and archaeological heritage protection

system. GIS [8] are computer-assisted systems for capturing,

storing, retrieving, analyzing, and displaying spatial data.

ArchTerr is an interactive digital map containing

information regarding archaeological sites throughout

Romania (freely available at www.archterr.ro).

ArchTerr is a working tool available to the Romanian

Ministry of Culture's territorial branches. It provides a

record-keeping database system and procedures for

enforcing legislation surrounding archaeological heritage

protection.

One of the main features of this integrated system is the

ability to display both STEREO70 (Stereographic 1970) [9]

and WGS84 (World Geodetic System 1984) [10] standard

coordinates for all documented archeological sites and allow

users to convert their coordinates.

Fig. 1 – ArchTerr basic architecture.

ArchTerr architecture (see Fig. 1) consists of two major

components: the application server and the map servers.

Requests are routed to each element through a reverse web

proxy.

348 Automation improvement for software applications deployment 2

On a hardware level, the two components are deployed on

two different virtual machines on a physical server. This

allows for easy backup and restoration of each virtual

machine in case of failure.

In this system, the tile server has only one purpose: to

generate the tiles used by the application to display

geographic information stored within the local PostgreSQL

database (Fig. 2).

Fig. 2 – ArchTerr components (Tile server).

Thus, the tile server needs to be able to render the raster

graphics files using the geographic information stored in the

database and then deliver the said renders to the client. This

is achieved using a daemon called rendered and an Apache

module called mod_tile to manage the file transfer.

All the information the TileServer provides is only useful

with the web (Fig. 3) ApplicationServer, which manages the

interactive application. It is a web application built using the

open-source Leaflet [11] library. Using this library, the

application will interface with the TileServer and display

several zoom (detail) levels based on the chosen tile layers.

Fig. 3 – Web view.

Additionally, specific information, such as archaeological

sites, documentation, and user information, will be stored in

the local PostgreSQL database and used to generate the

relevant reports.

3. MODELING THE DEPLOYMENT PROCESS

Before the advent of IaC and automation processes,

deploying a software system was rather straightforward.

Hardware resources, in this case, one or more physical

machine servers, are provisioned by a system administrator

and then configured to fit their respective roles, the

application and tile servers.

Software is installed on each machine individually and

configured to use the relevant networks, certificates, and

secrets. At the end of the process, the system is up and

running. But what happens in the event of a necessary

update? What if a disaster occurs, and the system must be

deployed again? A system administrator needs to manage

these actions manually.

We will consider that a physical machine has already been

provisioned. This machine will have the physical machine

hosting the virtual machines that comprise the ArchTerr

system. To ultimately deploy ArchTerr, we will require two

virtual machines. This will be the first step of the new

process, the provisioning of virtual machines. All necessary

software will be deployed to the machines and configured

after provisioning. Once configured, a smoke test is

performed to ensure the system functions correctly.

A preliminary model has been created to describe the steps

necessary to automate the provisioning and deployment of

the ArchTerr system (Fig. 4). However, this model needs to

consider existing infrastructure and configuration. As stated

before, with the appearance of IaC, infrastructure should be

versioned as any standard application software.

Fig. 4 – Preliminary process.

Versioning is important when continuously deploying and

redeploying infrastructure. The process must consider the

system's current state and the desired target. This is

especially relevant when performing updates or upgrades on

existing infrastructure.

3 Cristian Alexandru Cazan, Constantin Viorel Marian 349

The functionalities implemented for server management

and automation include the following:

• Configuration management to automate the creation and

maintenance of system configurations. It ensures server

consistency by defining desired states (installing

packages, managing users, configuring services).

• Deployment to automate application installation and

updates. It streamlines pushing code changes into

production (deploying web applications and updating

databases).

• Backup and Restore to automate data backup and

recovery. It ensures data integrity and disaster recovery

(regular backup of databases, files, and configurations).

• Monitoring and alerts to automate monitoring tasks to

detect problems. It sets alerts for abnormal conditions

(monitoring CPU usage, disk space, and network traffic).

• Security and compliance to automate security-related

tasks. It enforces compliance policies across servers

(applying security patches and managing firewall rules).

Fig. 5 – Final process.

As evidenced by Fig. 5, a few scenarios arose. Referring

to the definition files at the core of the IaC practice, several

checks must be performed to ensure consistency between the

system and the state definition files.

1. Machine state. If the machines are no longer

provisioned or visible due to a disaster, begin the

provisioning process.

2. System state. If the machine exists, gather system

information: hardware configuration, existing software, and

relevant versions, and configuration relating to secrets, keys,

and environment variables.

3. If the hardware does not match the most recent

definitions, destroy the machines and recreate them with the

correct resources.

4. If the hardware matches definitions but the software is

missing, install the missing software and configure it.

5. If the hardware and software match definitions, but

some configurations do not, overwrite all incorrect

configurations.

6. If the hardware, software, and configuration match the

definition, terminate execution.

With the process now clearly defined, choosing the tools

necessary for automating the deployment process is possible.

4. AUTOMATING THE ARCHTERR DEPLOYMENT

Some base assumptions need to be made to automate the

deployment and configuration of the ArchTerr integrated

system.

1. Servers are based on a Linux distribution. In this case, it

will be Debian 11.

2. Servers will be virtual machines hosted on the same

physical machine.

3. The physical machine (server) has already been installed

and is accessible to the hosting network.

Vagrant [12] is a software product developed by HashiCorp

that allows to build complete, reproducible development

environments. For the demonstration, the tool will be used to

automate the deployment of the two servers. This is achieved

through the creation of a Vagrantfile, where the configuration

is defined as such:

Vagrant.configure("2") do |config|
 config.vm.define "app" do | app |
 web.vm.box = "ubuntu/focal64"
 web.vm.hostname = app
 web.vm.network :private_network, ip: "192.168.56.101"
 end

 config.vm.define "tile" do | tile |
 db.vm.box = "debian/buster64"
 db.vm.hostname = tile
 db.vm.network :private_network, ip: "192.168.56.102"
 end
end

Any other static configuration could be deployed similarly

if lacking access to a secret vault that would allow the process

to pull the information from a more secure environment

directly.

With the static configuration now being deployed, another

important step is the database backup automation. In this case,

a daily backup would suffice. This could be implemented as

follows:

cp "$PJDIR/automation/backup.sh" /opt/backup.sh
chown postgres:postgres /opt/backup.sh
chmod 554 /opt/backup.sh # RX RX R
mkdir -p /var/backups/postgres
chown postgres:postgres /var/backups/postgres

350 Automation improvement for software applications deployment 4

chmod 604 /var/backups/postgres # RW - R
(crontab -u postgres -l ; echo "0 3 * * * /opt/backup.sh") |

 crontab -u postgres -

A small script has already been provided for the backup

process in the above code. However, what is important to

illustrate is the proper assignment of ownership and

permissions to the Postgres user and the execution scheduling.

At 03:00 every day, the backup script will secure the entire

database.

Now, it is necessary to configure the application to start as

a service. This can be achieved with a definition file in the

system daemon. Configuring the service to run with the users

created explicitly for the application is important. Other

relevant configurations are the restart policy and the

application's working directory.

After creating the file, the daemon must be reloaded, and

the service must be enabled to start at boot.

touch /etc/systemd/system/archterr.service
printf "[Unit]" \
 "Description=API for starting ArchTerrGIS application" \
 "\n[Service]" \
 "ExecStart=npm start" \
 "Restart=always" \
 "WorkingDirectory=/opt/archterrgis" \
 "User=archterr" \
 "Group=nrchterr" \
 "\n[Install]" \
 "WantedBy=multi-user.target" >

 /etc/systemd/system/archterr.service
systemctl daemon-reload
systemctl restart archterr
systemctl enable archterr

There is more configuration to do for the database and map

services on the Tileserver itself. As this machine will solely

generate and publish the raster graphics, some database

optimization can be done. In this scenario, the data will be

stored in a PostgreSQL database.

total_mem=$(cat /proc/meminfo | grep MemTotal | awk '{print

 int($2 / 1024 / 1000 + 0.5)}')
sed -i 's/^shared_buffers = .*$/shared_buffers =

 $((total_mem/4))GB/' \
 /etc/postgresql/11/main/postgresql.conf

sed -i 's/^work_mem = .*$/work_mem = 1GB/' \
 /etc/postgresql/11/main/postgresql.conf

sed -i 's/^maintenance_work_mem =
 .*$/maintenance_work_mem = $((total_mem/6))GB/'

 \/etc/postgresql/11/main/postgresql.conf
sed -i 's/^effective_cache_size = .*$/effective_cache_size =

 $((total_mem/4))GB/'
 \/etc/postgresql/11/main/postgresql.conf
systemctl restart postgresql

This allows the configuration to be dynamically generated

based on the system's resources. If the machine is upscaled or

downscaled, the configuration will be automatically altered

during the configuration process.

Considering a different deployment environment, such as a

cloud environment, all the automation presented above can be

deployed with a configuration management system (CMS)

such as Ansible. This would allow for a more transparent

configuration and eliminate potential differences between

distributions and distribution versions due to the internal

mechanics of Ansible [13]. Alternatively, the usage of

containers and the implicit containerization of the application

could prove fruitful. By switching to a container approach,

versioning the deployment of the application becomes

rudimentary, and most of the machine's configuration is

replaced by the creation of the image. This can be taken a step

forward when utilized in a cloud environment. As such, we

could integrate with Kubernetes for cloud computing or high-

performance computing, ultimately leveraging the service-

oriented resource management system and scheduling

mechanism [14].

The logical schema in Fig. 6 presents the relationship

between a central Configuration Management Server (CMS)

(Ansible) and the virtual machines within its inventory.

Through this abstraction, the administrator only needs to

maintain one version of the same script, without being

impacted by the differences between distributions: yum/dnf

(CentOS) vs apt (Ubuntu & Debian); selinux (CentOS) vs

apparmor (Debian) [15].

Since the project began, we have observed an exponential

increase in registered archeological sites and users. We are

designing the new platform, which will be based on a cluster

[16] and potentially migrate to microservices.

In the future, along with clustering implementation, we'll

create scaling and load-balancing scripts to automate server

scaling based on demand. This will distribute traffic

efficiently using load balancers (auto-scaling instances, load

balancing web servers).

Another module will focus on orchestration to coordinate

complex workflows involving multiple servers (automating

sequences of tasks across systems) such as rolling software

updates and failover procedures).

Fig. 6 – Ansible CMS.

Ansible guarantees that tasks are idempotent and will

ensure consistency across all systems. Moreover, its rich set of

modules can greatly simplify the tasks presented above,

particularly surrounding the setup of the databases and the tile

server. Furthermore, Ansible will integrate seamlessly with

existing infrastructure and tools thanks to its agentless

5 Cristian Alexandru Cazan, Constantin Viorel Marian 351

infrastructure. No dependencies must be installed on the

targeted machines; the only server requiring setup is the CMS

server. Numerous automation types employ disparate

methodologies, contingent upon the domain in which the tools

are utilized. A comprehensive comparison of automation types

is realized in [17]. These include but are not limited to,

manufacturing and software deployment.

In the ArchTerr research project context, the automation

scripts were selected based on several advantages compared to

a commercial off-the-shelf solution. The principal reasons are

presented below:

• Commercial tools offer many features in terms of

simplicity and efficiency, but they can be intricate to set

up and maintain. In contrast, automation scripts offer a

more straightforward approach, particularly when

tailored to specific tasks.

• In our case, customization was paramount as a research

project. Automation scripts allow for the customization

of scripts to fit the user's specific needs. In any of the

areas above – data analysis, quality assurance, or IT

operations – we maintain complete control over the

automation process. The scripts permitted the

automation process to be tailored to the project's

requirements. Commercial tools are constrained in their

ability to be customized.

• The cost-effectiveness of automation scripts was also

considered. Using open-source languages and libraries

resulted in minimal cost, and no licensing fees were

incurred. However, it is important to note that any

commercial solution will inevitably entail licensing

costs, which can accumulate significantly over time.

• The agility and adaptability of automation scripts proved

invaluable in facilitating a rapid response to the

archeologist team. A significant advantage is the ability

to rapidly adapt and modify scripts in response to

evolving research requirements. In contrast, commercial

tools may require vendor support or updates, which can

be slower.

• The project involved creating highly targeted automation

scripts (specific use cases) ideal for tasks such as

software testing, data analysis, and IT operations and

deployment. Commercial solutions often encompass

broader functionalities, including many features that are

not necessary for our needs.

As a concluding remark, utilizing automation scripts

afforded us complete control over the customization process.

Although Ansible offers considerable flexibility in terms of

customization, its predefined modules and playbooks impose

certain limitations.

In its commercial form (the Ansible Tower platform),

Ansible has additional costs for enhanced features and support

and requires vendor assistance for modifications.

Consequently, it is less agile.

5. CONCLUSIONS

Due to the need for a nationally mandated information

system for archeological preservation, each province must

create and maintain its informatics system to handle the

documentation and storage of information related to

archeological sites.

This creates a financial strain on the province

administrations due to the complexity of creating, deploying,

and maintaining such a system. Added to this are the licensing

costs for the software itself; this cost can be high for GIS

software systems.

The ArchTerr information system simplifies adopting a

digital information system at the provincial level.

Furthermore, by automating the deployment and configuration

of ArchTerr, the provincial administration can easily provide

the system to its archeological departments at greatly reduced

costs compared to other industry solutions such as ESRI and

ArcGIS [18].

While the cost of these systems can be justified in some

contexts, in the context of an interactive archeological

database, a provincial administration may need help justifying

the costs of licensing and powerful hardware.

Furthermore, with a built-in coordinate conversion system

between WGS84 and STEREO70, the relevant archeological

departments will not require additional GIS software. Thus,

deploying an instance of the ArchTerr system in each province

is a feasible solution that is both cost-saving and easy to

deploy.

ACKNOWLEDGMENTS

The Archterr project was supported by the Romanian

Ministry of Education and Research scientific grant, CCCDI-

UEFISCDI, project number PN-III-P2.2.1-PED-2019-5037

contract PED 571/2020 within the PNCDI III area.

Received on 31 March 2024

REFERENCES

1. I.C. Mustata et al., The evolution of Industry 4.0 and its potential impact

on industrial engineering and management education, Rev. Roum.
Sci. Techn. – Électrotechn. et Énerg., 67, 1, pp. 73–78 (2022).

2. I.C. Radu, Architecture considerations for communities of smart objects,

Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 3, pp. 337–
341 (2022).

3. E. Lazarou, C. Mustata, C. Dragomirescu, Working and learning in

industry 4.0 environments, U.P.B. Sci. Bull., Series D, 81, 4,
pp. 353–366 (2019).

4. M. Jesi, A. Appathurai, M. Kumaran, A. Kumar, Load balancing in cloud

computing via mayfly optimization algorithm, Rev. Roum. Sci.
Techn. – Électrotechn. et Énerg., 69, 1, pp. 79–84 (2024).

5. A. Wittig, M. Wittig, Amazon Web Services in Action, Manning Press,

p. 93 (2016).
6. T.A. Nitescu, A.I. Concea-Prisacaru, V. Sgarciu, Test automation for

continuous integration in software development, U.P.B. Sci. Bull.,

Series C, 84, 4 (2022).
7. C.V. Marian, M. Iacob, The ArchTerr project – a GIS-based integrated

system for cultural and archaeological heritage protection (pilot

phase tested in Romania), Applied Sciences, 12, 16, 8123 (2022).
8. M. DeMers, Fundamentals of Geographic Information Systems, John

Wiley & Sons Inc., 2009.

9. B. Morosanu, Deformațiile liniare relative în sistemele de proiecție
Stereografic 1970, Gauss-Krüger, UTM și comparații între acestea,

24 October 2007 [Online]. Available: https://geo-spatial.org/vechi/

articole/deformatii-liniare-in-sistemele-proiectie. [Accessed 30
June 2022].

10. U.S. Dept. of Defense, Department of Defense World Geodetic System

1984, National Imagery and Mapping Agency, 2000. Available:
https://apps.dtic.mil/sti/pdfs/ADA280358.pdf [Accessed 16 August

2023].

11. V. Agafonkin, Overview [Online]. Available: https://leafletjs.com/.
[Accessed 18 August 2023].

12. HashiCorp, Overview [Online]. Available:

https://www.vagrantup.com/ [Accessed 18 August 2023].
13. P. Masek, M. Stusek, J. Krejci, K. Zeman, J. Pokorny, M. Kudlacek,

Unleashing full potential of ansible framework: university labs

administration, 22nd Conference of Open Innovations Association
(FRUCT), Jyvaskyla, Finland, pp. 144–150 (2018).

14. I.M. Stan, S.D. Ciocirlan, R. Rughinis, Understanding the opportunities

352 Automation improvement for software applications deployment 6

of applying Kubernetes scheduling capabilities in high-

performance computing, U.P.B. Sci. Bull., Series C, 84, 4 (2022).

15. C. Cowan, Securing Linux systems with AppArmor, DEF CON, 15,
pp. 15–26 (2007).

16. M.E. Mihailescu, D. Mihai, M. Carabas, N. Tapus, The perspectives of

using Freebsd in cluster architectures, U.P.B. Sci. Bull., Series C,

86, 1 (2024).

17. V.G. Dogaru, F.D. Dogaru, V. Navrapescu, L.M. Constantinescu,

Analysis of different types of automation with emphasis on second-
life battery implementation, U.P.B. Sci. Bull., Series C, 86, 2 (2024).

18. Esri, About Esri [Online]. Available: https://www.esri.com/en-

us/about/about-esri/overview [Accessed 16 August 2023].

