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Processes in large energy systems exhibit a high variability due to the stochastic nature of electricity production and use. However, 
the control of the energy transfer aims to achieve steady state operation, which is mostly described by signals fully identifiable by 
a finite set of parameters. Part of the control system is the process of information delivered through measurements. In this paper, 
we analyze the impact of the measurement system deployed for reporting the RMS parameter of the voltage signal on the quality 
of information in LV distribution networks. The operation of such networks is highly stochastic, and the chosen models based on 
averaging are not always appropriate; therefore, we propose to apply a statistic metric, i.e., the coefficient of variation of the root 
mean square deviation CV(RMSD).

1. INTRODUCTION 
Voltage measurements in low-voltage (LV) distribution 

networks during steady-state conditions presume a periodic 
waveform with a known constant frequency, with the root 
mean square (RMS) parameter chosen as the information 
carrier. Additionally, it is assumed that the signal model 
remains defined and unique both during the measurement 
(𝑇!), reporting (𝑇") and the subsequent aggregation time 
interval (𝑇#), if such aggregation is embedded in the 
measurement/ control process. 

Deviations from the steady state model [1] of the voltage 
signal in the power system are currently quantified by 
assessing the RMS parameter and its profile during 
standardized time intervals. This assessment is done in [2] 
using rapid voltage changes (RVC), which are fast variations 
in voltage levels in electrical distribution systems. They are 
common, especially at the distribution level, and are 
expected to become more frequent with the increasing 
integration of dynamic loads and renewable-based 
generators into smart grids. This will assist DSOs in 
expeditiously conducting their services [3]. Integrating 
renewable sources into smart grids can cause dynamic 
behavior in voltage profiles [4], which must be examined to 
comply with regulators’ limits [5]. While RVCs are 
generally less critical than other power quality (PQ) events, 
such as dips, sags, and swells, they can still pose challenges 
due to their potential to disrupt the operation of generator 
control systems and electronic equipment [6,7]. 

The definition and criteria for identifying RVCs are 
important in selecting the appropriate measurement systems 
[8]. For example, the selected time window for assessing the 
RVC events is the measurement time needed to issue the 
RMS value (corresponding to the fundamental period of the 
assumed sinusoidal model), the reporting time window (half 
of the fundamental period), and the analysis window (1 s). 
Therefore, any revision or adjustment to the formal 
definition of an RVC event can significantly impact the 
identification and quantification of such events in power 
systems [9]. RVC is also relevant for different applications 
such as transformer inrush [10], low voltage dc analysis [11], 
medium voltage network analysis [9], propagation effect 
using multipoint measurement technique [12], or dynamic 
RMS voltage tracking [13]. 

The correlation between the flicker parameters and the 
magnitude that characterizes the RVC events is also studied 
and confirmed [14]. Another study [15] concludes that RVC 
events have a more significant impact than previously 

reported in subjective studies. The current policy limits the 
number of RVCs with magnitudes higher than 3 % of the 
nominal voltage [15]. Therefore, RVC continues to be a 
crucial factor in assessing flicker [16]. 

Another approach to assessing the severity of voltage 
variability while using the same parameter (RMS) is to use 
statistical metrics evaluated on time intervals compatible 
with legacy reporting rates today. This method allows for 
analyzing voltage profiles using the RMS values reported by 
the almost ubiquitous smart meters. 

Statistical signal processing is pivotal for integrating novel 
functionalities and deepening our comprehension of measured 
point behavior. Advancements in statistical implementation 
necessitate open and adaptable hardware and software 
solutions and expanded metric considerations [17]. 

The paper is structured into five sections. Section 2 
introduces the statistical approach and evaluates the 
measurement layer used for data collection. Section 3 
discusses RMS voltage assessment in LV networks for the 
daily horizon, and section 4 covers RMS voltage assessment 
during a week. The paper concludes with section 5, 
summarizing the findings. 

2. METRICS FOR ASSESSMENT OF SIGNAL 
VARIABILITY 

The measurement process is considered effective when 
the information extracted from the analyzed phenomena is 
aligned with the capabilities of the measurement devices. 
Several methods have been previously suggested in the 
literature to gauge the disparity between an estimated model 
and the real process. For example when the signal 𝑥(𝑡) is 
acquired with sufficiently high sampling rate 𝑓$ and the 
samples 𝑥% are available together with the measured (and the 
reported) value 𝑋! associated with a known model 𝑦(𝑡), the 
goodness of fit (GoF) indicates signal variability compared 
to the assumed model having m degrees of freedom [18]. The 
most encountered metric for goodness of fit is based on the 
root mean squared error [1]: 

𝐺𝑜𝐹 = 20log &'
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%#!

.																										(1)	

For an ac electrical system, we usually select the RMS 
value as the parameter to be fitted to the sinusoidal model of 
the signal:  

𝑦(𝑡) = 𝑌√2	sin(2п𝑓𝑡).                        (2) 

In this case, in equation (1) 𝑋: is the reported RMS value 
of the signal: 𝑋: = 𝑋! = 𝑌. 
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Let’s consider the voltage signal (single phase) acquired 
with 𝑓$ =51200 samples/s in one node of the MicroDERLab 
laboratories in September 2022. Figure 1 shows the recorded 
[19] voltage signal during a 200 ms time window, while 
Fig. 2 presents the GoF computed with (1), for each 
fundamental period of the 50 Hz signal (𝑛 = 51200 50⁄ =
1024 samples). The average value of GoF for this signal on 
the analysis window of 200 ms is 25.42 dB. 

 
Fig. 1 – Voltage signal acquired in September 2022; 𝑥! measured values 

(blue) and 𝑦! the values of the assumed model (red). 

 

Fig. 2 – GoF values for the signal in Fig.1, 𝑇"= 200 ms, 𝑇#=20ms; voltage 
signal acquired with 𝑓$ =51200 samples/s. 

This metric is highly dependent on the choice of the time 
interval for which the comparison is made and needs to be 
further assessed using a statistical approach. Therefore, it is 
useful to analyze the process of deviation from steady-state 
behavior further when this is understood as described by 
signals fully aligned to the adopted model (i.e., having a 
sinusoidal variation). 

We proposed another approach in [20–22], using metrics 
derived from statistical analysis performed for the reported 
measurement values on the assumed model with predefined 
time windows. We applied those metrics for the models 
described by constant (mean) values over designated 
reporting windows. 

In the following, we list the metrics proposed in [22]: 
mean absolute error (MAE) is a linear measure of the errors 
between two data sets (𝑥%,𝑦%) that express the same 
phenomenon. This method is one of the most used in the 
forecasting area of study to compare a real data set with an 

estimated one 

𝑀𝐴𝐸 = ∑ |+%,-%|
"
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0
 .                           (3) 

Mean squared error (MSE) gives the average of the 
squares of the errors (the average squared difference between 
the estimated values 𝑦% and the actual values 𝑥%): 

𝑀𝑆𝐸 = ∑ (+%,-%)&
"
%'!

0
 .                          (4) 

Root mean squared error (RMSE) gives the standard 
deviation of the residues. Residues are a metric that tells how 
far from the regression line 𝑦% the points 𝑥% are, thus showing 
how scattered they are: 

𝑅𝑀𝑆𝐸 = E∑ (+%,-%)&"
%'!

0
= √𝑀𝑆𝐸.                (5) 

Coefficient of variation of RMSE (CV-RMSE) normalizes 
the RMSE value in (5) using the mean estimated value 𝑦F:  

𝐶𝑉(𝑅𝑀𝑆𝐸) = 1
-2
E∑ (+%,-%)&"
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0

 .                   (6) 

The coefficient of variation (CV) of the root mean square 
deviation (RMSD) is a statistical measure that provides a 
normalized (by 𝑦F3) measure of the variability of RMSD 
values [23]: 

𝐶𝑉(𝑅𝑀𝑆𝐷) = 1
-2(
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 .                     (7) 

The mean absolute percentage error (MAPE) is the mean 
or average of the absolute percentage errors of forecasts (𝑦%): 

𝑀𝐴𝑃𝐸 = 144
0
∑ L+%,-%

+%
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%51 .                       (8) 

Mean squared percentage error (MSPE) represents the 
sum of the absolute values obtained by the difference 
between the actual (𝑥%) and the estimated value (𝑦%) divided 
by the real value of each sample, squared, which is then 
divided by the number of samples and expressed in 
percentage: 

𝑀𝑆𝑃𝐸 = 144
0
∑ L+%,-%

+%
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%51
6
 .                   (9) 

The coefficient of determination 𝑅6 is a metric that 
evaluates the ability of a model (𝑦M%) to predict or evaluate a 
result in linear regression (𝑦%): 

𝑅6 = 1 − ∑ (+%,-%)&
"
%'!

∑ (-%,-7%)&"
%'!

.                       (10) 

We adapted the metrics (3)-(10) to the measurements 
performed on the signal 𝑥(𝑡), corelated with every 𝑇"=1/RR 
reported measurement value 𝑋!, where RR is the selected 
reporting rate of the measurement system. The assumed 
signal model 𝑦(𝑡) during 𝑇" is described by the samples 𝑦%, 
𝑖 = 1…𝑛, where n is the number of samples available during 
𝑇" but not reported. We denoted with 𝑦M	 the “best estimation” 
of the model during a time interval 𝑇$$, usually larger than 
the reporting time 𝑇#, while 𝑇$$ is defined by the user as a 
time interval for which a steady state validity of the model is 
assumed. For those cases where the best estimation is the 
average of a constant value model (𝑦% − 𝑦M%) we have rounded 
|𝑦% − 𝑦M%| by the ∆𝑥!#+ corresponding to the declared quality 
for the measurement system. We denoted with 𝑦F3, a 
presumed model value representing the designated process 
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time window. When this selected model corresponds to 𝑇" is 
obtained 𝑦F3 = 𝑦F, it relies on the specific context of the 
application [23]. 

Based on previous experiences and assessments with the 
metrics (3) to (10) across multiple measurands and processes 
[18], and based on this wealth of information, we found that 
the CV(RMSD) metric (7) is most suitable for characterizing 
the behavior of the power system based upon voltage 
assessment. We apply this metric to question the variability 
of the RMS-reported values of the LV network using several 
time windows for analysis. 

The measurements are made available with 1 s time 
resolution by an unbundled smart meter (USM, [24]). In 
contrast, the model is established based on the mean calculated 
over the reporting time of legacy smart meters [25]. The 
architecture of the USM adheres to the conventional structure 
comprising two components: the smart metrology meter 
(SMM) responsible for measurements and the smart meter 
extension (SMX), which is a configurable extension to process 
the SMM values. The metrology aspect of the USM 
(presumably referring to an energy monitoring or management 
system) relies on using three-phase SOCOMEC meters, which 
offer Class 1 accuracy for active energy measurement and 
Class 2 accuracy for reactive energy measurement [26]. The 
SMX component of the system incorporates a Raspberry Pi 
(RPi) 3 board [27], which acts as a single-board computer. Its 
primary function is to establish a physical connection with the 
SOCOMEC meter, allowing for the retrieval of 
instrumentation values with high temporal resolution through 
specific configuration tasks. The Raspberry Pi is an interface 
between the meter and the rest of the system, facilitating data 
extraction and processing. To achieve a high reporting rate, the 
communication between the SOCOMEC meter and the 
Raspberry Pi (SMX) utilizes a serial interface, specifically 
RS485, employing the IEC 62056 communication protocol 
(DLMS/COSEM) [28]. This protocol is widely used in energy 
metering systems and supports efficient and reliable data 
exchange between devices. 

 

 
Fig. 3 – Time intervals for voltage variability assessment (discrete 

sequence of RMS values, computed on 1 s time window). 

The following parameters have been used for the voltage 
assessment: 

𝑥% = 𝑈%; 𝑦% =
∑ 8%
)*
%'!
9*

; 𝑦F3 =
∑ 8%
)+
%'!
9+

,                 (11) 

where 𝑈%– is the i-th reported RMS value (estimated from the 
voltage signal on 𝑇$!= 1 s measurement time), 𝑁" = 𝑇" 𝑇$!⁄ ,  
𝑁: = 𝑁" ∙ 𝑀 𝑀 = 𝑇# 𝑇"⁄ , 𝑖=1…𝑁#. 

For this investigation, we chose three legacy smart meters 

with reporting time intervals of 	𝑇"= 15 min., 30 min., and 1 
h, respectively. The analysis is conducted over a daily 
observation window designated as 𝑇#= 24 h. To emphasize 
the continuous sequences of 𝑇" and 𝑇# in relation to the 
computation of various metrics assessing the deviation from 
the assumed model 𝑦(𝑡), Fig. 3 depicts an illustrative 
example. The assumed model 𝑦(𝑡) is derived from the actual 
acquired RMS voltage data by calculating the mean value of 
the time series data within a specified analysis time window. 

 3. DAILY VOLTAGE VARIABILITY ASSESSMENT 
We assess the voltage variability on a 3 phase LV network, 

where we note the RMS values on each phase as 𝑈;, 𝑘 = 1, 3FFFFF, 
during a summer day in 2023. The CV(RMSD) metric is 
computed for three different measurement windows: 15 min., 
30 min. and 1 h respectively, while the aggregation is 
performed on a	𝑇#= 2 h window. 

 

 
Fig. 4 – Voltage signal on phase 1 (𝑈%), on 21st July, measured value 

(blue), assumed constant model (red) on 𝑇#=1 h 

Figure 4 presents the daily voltage profile for the first 
phase (𝑈1) on 21 July 2023, while Fig. 5 presents the 
CV(RMSD) values computed for the signal in Fig. 4 using 
𝑇"=1 h, 𝑇#=2 h. It can be observed that the maximum value 
is 0.78 %, reported at the end of the 𝑇"61 window at 21:00. 

 

 
Fig. 5 – CV(RMSD) for the voltage 𝑈% in Fig. 4. 

We repeat the procedure for the other two phases 𝑈6 and 
𝑈<, on, 21 July 2023, and the CV(RMSD) results are 
presented in Table 1. In the table we observe that the maxim 
CV(RMSD) value for 𝑈6	is 1.68 %, depicted at 1:00. The 
maxim value for 𝑈< is 2.32 % at the end of 𝑇"1=.  
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Table 1 
CV(RMSD) for voltage (RMS values) on 21st July 2023, 𝑇# = 1 h. 

𝑇& 
Reporting 
interval 

[hh:mm:ss] 

CV(RMSD) 
for 𝑈% 
[%] 

CV(RMSD) 
for 𝑈' 
[%] 

CV(RMSD) 
for 𝑈( 
[%] 

𝑇&% [00:00:00-
1:00:00) 0.61 1.68 1.70 

… … … … … 

𝑇&%) [15:00:00-
16:00:00) 0.55 0.83 2.32 

… … … … … 

𝑇&'% [20:00:00-
21:00:00) 0.78 0.46 0.43 

… … … … … 

𝑇&'* [23:00:00-
24:00:00) 0.39 0.55 0.40 

Figure 6 presents daily voltage profile for the first phase 
(𝑈1) on 21 July 2023, while Fig.7 presents the CV(RMSD) 
values computed for the same signal using 𝑇"= 30 min., 𝑇#=2 
h. It can be observed that the maximum value is 0.72% for 
reported window 𝑇"<4, at 15:00. We repeat the procedure for 
the voltages on the other two phases (𝑈6, 𝑈<	), on 21 July 
2023, with  𝑇> = 30 min. and the CV(RMSD) results are 
presented in Table 2, where we can observe that the 
maximum value is 2.34% for 𝑈6	and 2.57% for 𝑈<. 

 
Fig. 6 – Voltage signal on phase 1 (𝑈%), on 21st July, measured value 

(blue), assumed constant model (red) on 𝑇#= 30 min. 

 
Fig. 7 – CV(RMSD) for the voltage 𝑈% in Fig. 6 

We repeat the procedure for the voltages on the other two 
phases (𝑈6,𝑈<), on 21 July 2023, with  𝑇> = 15 min. Results 
are presented in Table 3, where we can observe that the 
maximum value is 3.3 % for 𝑈6	and is 2.32 % and 3.28 % for 
𝑈<. Figure 8 presents daily voltage profile for the first phase 
(𝑈1) on 21 July 2023, while Fig.9 presents the CV(RMSD) 
values computed for the signal in Fig. 8 using 𝑇"= 15 min., 

𝑇#	= 2 h. It can be observed that the maximum value is find 
in window 𝑇"61 at 10:15 and is 0.91 %. 

 
Fig. 8 – Voltage signal on phase 1 (𝑈%), on 21st July, measured value 

(blue), assumed constant model (in red) on 𝑇#=15 min. 

 
Fig. 9 – CV RMSD) for the voltage 𝑈% in Fig. 8. 

Table 2 
CV(RMSD) for voltage (RMS values) during 21 July 2023, 𝑇# = 30 min. 
𝑇& Reporting 

interval 
[hh:mm:ss] 

CV(RMSD) 
for 𝑈% 
[%] 

CV(RMSD) 
for 𝑈' 
[%] 

CV(RMSD) 
for 𝑈( 
[%] 

𝑇&% [00:00:00-
0:30:00) 0.38 2.34 2.37 

𝑇&' [00:30:00-
01:00:00) 0.34 0.29 0.34 

… … … … … 

𝑇&(+ [14:30:00-
15:00:00) 0.72 0.87 2.57 

… … … … … 

𝑇&*, [23:00:00-
23:30:00) 0.49 0.46 0.24 

𝑇&*- [23:30:00-
24:00:00) 0.25 0.49 0.34 

Table 3 
CV(RMSD) for voltage (RMS values) during 21 July 2023,𝑇# = 15 min. 
𝑇& Reporting 

moment 
[hh:mm:ss] 

CV(RMSD) 
for 𝑈% 
[%] 

CV(RMSD) 
for 𝑈' 
[%] 

CV(RMSD) 
for 𝑈( 
[%] 

𝑇&% [00:00:00-
00:15:00) 0.25 3.30 3.28 

… … … … … 

𝑇&*% [10:00:00-
10:15:00) 0.91 0.79 0.91 

𝑇&*' [10:15:00-
10:30:00) 0.34 0.47 0.23 

… … … … … 

𝑇&.) [23:45:00-
24:00:00) 0.28 0.29 0.22 
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4. WEEKLY VOLTAGE VARIABILITY 
ASSESSMENT 

We analyzed the voltage profile during one week in April 
2023 to better understand voltage variability. For this 
assessment, we performed CV(RMSD) calculations with two 
reporting rates (1 and 4 frames per hour, respectively) and 
𝑇?= 2 h. We applied eq. (7) considering that the presumed 
model value 𝑦F3 is the nominal voltage (𝑦F3 =	𝑈0).  

Table 4 presents the maximum and minimum CV(RMSD) 
values for one week, for the three-phase voltage signals 
(𝑈1,𝑈6,𝑈<), 𝑇"	= 1 h, 𝑇#= 2 h. It can be observed that the 
maximum variability is on 𝑈< where CV(RMSD) is equal to 
3.38 % (Thursday, 08.04.2023). The minimum CV(RMSD) 
is 0.24 %, also on 𝑈<	(Wednesday 07.04.2023). Table 5 
presents the maximum and minimum CV(RMSD) values for 
one week, for the three-phase voltage signals (𝑈1,𝑈6,𝑈<), 
𝑇"= 15 min., 𝑇#=2 h. It can be observed that the maximum 
variability is on 𝑈< where CV(RMSD) is equal to 3.48 % 
(Monday, 05.04.2023). The minimum CV(RMSD) is 
0.16 %, also on 𝑈<	(Saturday, 10.04.2023). 

Table 4 
CV(RMSD) during one week in April, 𝑇# = 1. 

Day 𝑈% 𝑈' 𝑈( 
CV(RMSD), 𝑇&=1 h 

max 
[%] 

min 
[%] 

max 
[%] 

min 
[%] 

max 
[%] 

min 
[%] 

05.04.2023 1.86 0.41 1.88 0.34 3.09 0.40 
06.04.2023 1.38 0.37 1.59 0.38 3.10 0.25 
07.04.2023 1.20 0.36 1.43 0.38 2.87 0.24 
08.04.2023 1.89 0.47 2.05 0.37 3.38 0.43 
09.04.2023 1.20 0.33 1.03 0.37 1.80 0.31 
10.04.2023 1.50 0.36 1.94 0.34 2.46 0.30 
11.04.2023 1.19 0.35 1.88 0.40 2.04 0.25 

Table 5 
CV(RMSD) during one week in April for 𝑇# = 15 min. 

Day 𝑈% 𝑈' 𝑈( 
CV(RMSD), 𝑇&=15 min 

max [%] min 
[%] 

max 
[%] 

min 
[%] 

max 
[%] 

min 
[%] 

05.04.2023 1.48 0.22 1.85 0.21 3.48 0.20 
06.04.2023 1.55 0.26 2.16 0.18 2.61 0.17 
07.04.2023 1.18 0.23 2.15 0.18 2.69 0.18 
08.04.2023 1.81 0.27 2.15 0.18 2.93 0.19 
09.04.2023 1.79 0.23 1.71 0.21 2.43 0.17 
10.04.2023 1.03 0.24 1.98 0.21 3.17 0.16 
11.04.2023 1.13 0.25 1.90 0.2 2.02 0.18 

To estimate the daily voltage variability with only one 
CV(RMSD) indicator we apply eq. (7) with nominal voltage 
as the presumed model value 𝑦F3 and 𝑇"=2 h: 

𝑦%∗ =
∑ 8%
)*
%'!
9*

; 𝑦F3 = 𝑈0.                          (11) 

Table 6 
CV(RMSD) values for one week in April for the assumed model 

 𝑦!∗ with 𝑇# = 2 h. 
Day CV(RMSD) 

for 𝑈% [%] 
CV(RMSD) 

for 𝑈' [%] 
CV(RMSD) 

for 𝑈( [%] 
05.04.2023 0.96 1.15 1.38 
06.04.2023 0.80 1.05 1.44 
07.04.2023 0.90 0.91 1.68 
08.04.2023 1.01 1.26 1.93 
09.04.2023 0.77 0.77 0.96 
10.04.2023 0.89 1.16 1.31 
11.04.2023 0.79 1.05 1.39 
 
Results for the considered week in April using the 

assumed model 𝑦%∗ are presented in Table 6. It can be 
observed that the highest CV(RMSD) value is on Thursday 

(08.04.2023) for 𝑈<. During the entire week, the CV(RMSD) 
for voltage on phase 3 was higher than 1.3 %, while for the 
other two phases CV(RMSD) was constantly lower, which 
indicates that equipment connected on phase 3 (either PV 
generation or fluctuating loads) impact on the voltage 
waveform and additional measures for improving the local 
distribution network should be considered. 

The study carried out for the considered week in April 
provides important information about assessing system 
variability in the three-phase network based on information 
measurements. Our interest is not in the global variability of 
the RMS voltage parameter but rather in its variability within 
the legacy reporting interval adopted by the power quality 
community. Our aim is to highlight that this reporting 
interval is no longer adequate. Therefore, we seek to 
demonstrate the need for a revised reporting method to better 
capture the dynamics of modern electrical networks. The 
study was conducted on a network with specific 
characteristics, affecting the results' generalizability. 
However, our idea is to propose a method to quantify the 
system variability. We plan to extend our research to include 
a variety of network environments in future studies to 
validate the generality of the proposed metric CV(RMSD) 
applied to the RMS voltage values. 

5. CONCLUSIONS 
This paper assesses the high variability of energy transfer 

in distribution networks using measured voltage signals and 
statistical methods. Specifically, the RMS of the voltage 
signal is used as the basis for the study using the coefficient 
of variation of CV(RMSD). The main output of the study is 
that the measurement systems deployed for reporting the 
RMS parameter of the voltage signal affect the quality of 
information in LV distribution networks. As such, we 
suggest employing a statistical metric, the coefficient of 
variation of the CV(RMSD), to analyze the daily and weekly 
voltage variability using three methods corresponding to the 
length of the assessment time window and implicit model, 
respectively. 

The CV(RMSD) metric provides a more accurate 
representation of voltage variation by normalizing the RMS 
deviation relative to the mean, allowing for a consistent 
comparison across different scales. Its ability to reveal 
intricate patterns of network behavior and assess temporal 
stability makes it an indispensable and useful tool for 
advancing the reliability and performance of power 
distribution systems. Future work aims to integrate 
CV(RMSD) into standard monitoring practices and explore 
its potential in predictive maintenance algorithms to enhance 
power quality management further.  

The proposed metrics, derived from statistical tools, can 
be considered topology agnostic. They are not intended as a 
replacement for classical methods to evaluate network 
performance and variability, but they add another dimension 
to the available information and invite us to reconsider the 
steady state models and their implicit time constants for 
power flow analysis in emerging, low-inertia networks. The 
impact of the measurement chain on the results is part of a 
future endeavor. 
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