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Processes in large energy systems exhibit a high variability due to the stochastic nature of electricity production and use. However, 

the control of the energy transfer aims to achieve steady state operation, which is mostly described by signals fully identifiable by 

a finite set of parameters. Part of the control system is the process of information delivered through measurements. In this paper, 

we analyze the impact of the measurement system deployed for reporting the RMS parameter of the voltage signal on the quality 

of information in LV distribution networks. The operation of such networks is highly stochastic, and the chosen models based on 

averaging are not always appropriate; therefore, we propose to apply a statistic metric, i.e., the coefficient of variation of the root 

mean square deviation CV(RMSD).

1. INTRODUCTION 

Voltage measurements in low-voltage (LV) distribution 

networks during steady-state conditions presume a periodic 

waveform with a known constant frequency, with the root 

mean square (RMS) parameter chosen as the information 

carrier. Additionally, it is assumed that the signal model 

remains defined and unique both during the measurement 

(𝑇𝑚), reporting (𝑇𝑟) and the subsequent aggregation time 

interval (𝑇𝑎), if such aggregation is embedded in the 

measurement/ control process. 

Deviations from the steady state model [1] of the voltage 

signal in the power system are currently quantified by 

assessing the RMS parameter and its profile during 

standardized time intervals. This assessment is done in [2] 

using rapid voltage changes (RVC), which are fast variations 

in voltage levels in electrical distribution systems. They are 

common, especially at the distribution level, and are 

expected to become more frequent with the increasing 

integration of dynamic loads and renewable-based 

generators into smart grids. This will assist DSOs in 

expeditiously conducting their services [3]. Integrating 

renewable sources into smart grids can cause dynamic 

behavior in voltage profiles [4], which must be examined to 

comply with regulators’ limits [5]. While RVCs are 

generally less critical than other power quality (PQ) events, 

such as dips, sags, and swells, they can still pose challenges 

due to their potential to disrupt the operation of generator 

control systems and electronic equipment [6,7]. 

The definition and criteria for identifying RVCs are 

important in selecting the appropriate measurement systems 

[8]. For example, the selected time window for assessing the 

RVC events is the measurement time needed to issue the 

RMS value (corresponding to the fundamental period of the 

assumed sinusoidal model), the reporting time window (half 

of the fundamental period), and the analysis window (1 s). 

Therefore, any revision or adjustment to the formal 

definition of an RVC event can significantly impact the 

identification and quantification of such events in power 

systems [9]. RVC is also relevant for different applications 

such as transformer inrush [10], low voltage dc analysis [11], 

medium voltage network analysis [9], propagation effect 

using multipoint measurement technique [12], or dynamic 

RMS voltage tracking [13]. 

The correlation between the flicker parameters and the 

magnitude that characterizes the RVC events is also studied 

and confirmed [14]. Another study [15] concludes that RVC 

events have a more significant impact than previously 

reported in subjective studies. The current policy limits the 

number of RVCs with magnitudes higher than 3 % of the 

nominal voltage [15]. Therefore, RVC continues to be a 

crucial factor in assessing flicker [16]. 

Another approach to assessing the severity of voltage 

variability while using the same parameter (RMS) is to use 

statistical metrics evaluated on time intervals compatible 

with legacy reporting rates today. This method allows for 

analyzing voltage profiles using the RMS values reported by 

the almost ubiquitous smart meters. 

Statistical signal processing is pivotal for integrating novel 

functionalities and deepening our comprehension of measured 

point behavior. Advancements in statistical implementation 

necessitate open and adaptable hardware and software 

solutions and expanded metric considerations [17]. 

The paper is structured into five sections. Section 2 

introduces the statistical approach and evaluates the 

measurement layer used for data collection. Section 3 

discusses RMS voltage assessment in LV networks for the 

daily horizon, and section 4 covers RMS voltage assessment 

during a week. The paper concludes with section 5, 

summarizing the findings. 

2. METRICS FOR ASSESSMENT OF SIGNAL 

VARIABILITY 

The measurement process is considered effective when 

the information extracted from the analyzed phenomena is 

aligned with the capabilities of the measurement devices. 

Several methods have been previously suggested in the 

literature to gauge the disparity between an estimated model 

and the real process. For example when the signal 𝑥(𝑡) is 

acquired with sufficiently high sampling rate 𝑓𝑠 and the 

samples 𝑥𝑖 are available together with the measured (and the 

reported) value 𝑋𝑚 associated with a known model 𝑦(𝑡), the 

goodness of fit (GoF) indicates signal variability compared 

to the assumed model having m degrees of freedom [18]. The 

most encountered metric for goodness of fit is based on the 

root mean squared error [1]: 

GoF = 20log
�̂�

√
1

𝑛−𝑚
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖−1

.                          (1) 
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For an ac electrical system, we usually select the RMS 

value as the parameter to be fitted to the sinusoidal model of 

the signal:  

𝑦(𝑡) = 𝑌√2 sin(2п𝑓𝑡).                        (2) 

In this case, in equation (1) �̂� is the reported RMS value 

of the signal: �̂� = 𝑋𝑚 = 𝑌. 

Let’s consider the voltage signal (single phase) acquired 

with 𝑓𝑠 =51 200 samples/s in one node of the MicroDERLab 

laboratories in September 2022. Figure 1 shows the recorded 

[19] voltage signal during a 200 ms time window, while 

Fig. 2 presents the GoF computed with (1), for each 

fundamental period of the 50 Hz signal (𝑛 = 51 200 50⁄ =
1024 samples). The average value of GoF for this signal on 

the analysis window of 200 ms is 25.42 dB. 

 

Fig. 1 – Voltage signal acquired in September 2022; 𝑥𝑖 measured values 

(blue) and 𝑦𝑖 the values of the assumed model (red). 

 

Fig. 2 – GoF values for the signal in Fig.1, 𝑇𝑎 = 200 ms, 𝑇𝑟  = 20ms; 

voltage signal acquired with 𝑓𝑠 = 51 200 samples/s. 

This metric is highly dependent on the choice of the time 

interval for which the comparison is made and needs to be 

further assessed using a statistical approach. Therefore, it is 

useful to analyze the process of deviation from steady-state 

behavior further when this is understood as described by 

signals fully aligned to the adopted model (i.e., having a 

sinusoidal variation). 

We proposed another approach in [20–22], using metrics 

derived from statistical analysis performed for the reported 

measurement values on the assumed model with predefined 

time windows. We applied those metrics for the models 

described by constant (mean) values over designated 

reporting windows. 

In the following, we list the metrics proposed in [22]: 

mean absolute error (MAE) is a linear measure of the errors 

between two data sets (𝑥𝑖,𝑦𝑖) that express the same 

phenomenon. This method is one of the most used in the 

forecasting area of study to compare a real data set with an 

estimated one 

MAE =
∑ |𝑥𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
 .                           (3) 

Mean squared error (MSE) gives the average of the 

squares of the errors (the average squared difference between 

the estimated values 𝑦𝑖  and the actual values 𝑥𝑖): 

MSE =
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
 .                          (4) 

Root mean squared error (RMSE) gives the standard 

deviation of the residues. Residues are a metric that tells how 

far from the regression line 𝑦𝑖  the points 𝑥𝑖 are, thus showing 

how scattered they are: 

RMSE = √
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
= √MSE.                (5) 

Coefficient of variation of RMSE (CV-RMSE) normalizes 

the RMSE value in (5) using the mean estimated value �̅�:  

CV(RMSE) =
1

�̅�
√

∑ (𝑥𝑖−𝑦𝑖)2𝑛
𝑖=1

𝑛
 .                   (6) 

The coefficient of variation (CV) of the root mean square 

deviation (RMSD) is a statistical measure that provides a 

normalized (by �̅�𝑝) measure of the variability of RMSD 

values [23]: 

CV(RMSD) =
1

�̅�𝑝

√
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
 .                     (7) 

The mean absolute percentage error (MAPE) is the mean 

or average of the absolute percentage errors of forecasts (𝑦𝑖): 

MAPE =
100

𝑛
∑ |

𝑥𝑖−𝑦𝑖

𝑥𝑖
|𝑛

𝑖=1 .                       (8) 

Mean squared percentage error (MSPE) represents the 

sum of the absolute values obtained by the difference 

between the actual (𝑥𝑖) and the estimated value (𝑦𝑖) divided 

by the real value of each sample, squared, which is then 

divided by the number of samples and expressed in 

percentage: 

MSPE =
100

𝑛
∑ |

𝑥𝑖−𝑦𝑖

𝑥𝑖
|𝑛

𝑖=1

2

 .                   (9) 

The coefficient of determination 𝑅2 is a metric that 

evaluates the ability of a model (�̃�𝑖) to predict or evaluate a 

result in linear regression (𝑦𝑖): 

𝑅2 = 1 −
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̃�𝑖)2𝑛
𝑖=1

.                       (10) 

We adapted the metrics (3)-(10) to the measurements 

performed on the signal 𝑥(𝑡), corelated with every 𝑇𝑟=1/RR 

reported measurement value 𝑋𝑚, where RR is the selected 

reporting rate of the measurement system. The assumed signal 

model 𝑦(𝑡) during 𝑇𝑟 is described by the samples 𝑦𝑖 , 𝑖 =
1 … 𝑛, where n is the number of samples available during 𝑇𝑟 

but not reported. We denoted with �̃�  the “best estimation” of 
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the model during a time interval 𝑇𝑠𝑠, usually larger than the 

reporting time 𝑇𝑎, while 𝑇𝑠𝑠 is defined by the user as a time 

interval for which a steady state validity of the model is 

assumed. For those cases where the best estimation is the 

average of a constant value model (𝑦𝑖 − �̃�𝑖) we have rounded 

|𝑦𝑖 − �̃�𝑖| by the ∆𝑥𝑚𝑎𝑥  corresponding to the declared quality 

for the measurement system. We denoted with �̅�𝑝, a presumed 

model value representing the designated process time window. 

When this selected model corresponds to 𝑇𝑟 is obtained �̅�𝑝 = 

�̅�, it relies on the specific context of the application [23]. 

Based on previous experiences and assessments with the 

metrics (3) to (10) across multiple measurands and processes 

[18], and based on this wealth of information, we found that 

the CV(RMSD) metric (7) is most suitable for characterizing 

the behavior of the power system based upon voltage 

assessment. We apply this metric to question the variability 

of the RMS-reported values of the LV network using several 

time windows for analysis. 

The measurements are made available with 1 s time 

resolution by an unbundled smart meter (USM, [24]). In 

contrast, the model is established based on the mean calculated 

over the reporting time of legacy smart meters [25]. The 

architecture of the USM adheres to the conventional structure 

comprising two components: the smart metrology meter 

(SMM) responsible for measurements and the smart meter 

extension (SMX), which is a configurable extension to process 

the SMM values. The metrology aspect of the USM 

(presumably referring to an energy monitoring or management 

system) relies on using three-phase SOCOMEC meters, which 

offer Class 1 accuracy for active energy measurement and Class 

2 accuracy for reactive energy measurement [26]. The SMX 

component of the system incorporates a Raspberry Pi (RPi) 3 

board [27], which acts as a single-board computer. Its primary 

function is to establish a physical connection with the 

SOCOMEC meter, allowing for the retrieval of instrumentation 

values with high temporal resolution through specific 

configuration tasks. The Raspberry Pi is an interface between 

the meter and the rest of the system, facilitating data extraction 

and processing. To achieve a high reporting rate, the 

communication between the SOCOMEC meter and the 

Raspberry Pi (SMX) utilizes a serial interface, specifically 

RS485, employing the IEC 62056 communication protocol 

(DLMS/COSEM) [28]. This protocol is widely used in energy 

metering systems and supports efficient and reliable data 

exchange between devices. 
 

 

Fig. 3 – Time intervals for voltage variability assessment (discrete 
sequence of RMS values, computed on 1 s time window). 

The following parameters have been used for the voltage 

assessment: 

𝑥𝑖 = 𝑈𝑖; 𝑦𝑖  =
∑ 𝑈𝑖

𝑁𝑟
𝑖=1

𝑁𝑟
; �̅�𝑝 =

∑ 𝑈𝑖
𝑁𝑎
𝑖=1

𝑁𝑎
,                 (11) 

where 𝑈𝑖 is the i-th reported RMS value (estimated from the 

voltage signal on 𝑇𝑠𝑚= 1 s measurement time), 𝑁𝑟 = 𝑇𝑟 𝑇𝑠𝑚⁄ ,  

𝑁𝐴 = 𝑁𝑟 ∙ 𝑀 𝑀 = 𝑇𝑎 𝑇𝑟⁄ , 𝑖=1…𝑁𝑎. 

For this investigation, we chose three legacy smart meters 

with reporting time intervals of  𝑇𝑟= 15 min, 30 min, and 1 

h, respectively. The analysis is conducted over a daily 

observation window designated as 𝑇𝑎= 24 h. To emphasize 

the continuous sequences of 𝑇𝑟 and 𝑇𝑎 in relation to the 

computation of various metrics assessing the deviation from 

the assumed model 𝑦(𝑡), Fig. 3 depicts an illustrative 

example. The assumed model 𝑦(𝑡) is derived from the actual 

acquired RMS voltage data by calculating the mean value of 

the time series data within a specified analysis time window. 

 3. DAILY VOLTAGE VARIABILITY ASSESSMENT 

We assess the voltage variability on a 3 phase LV network, 

where we note the RMS values on each phase as 𝑈𝑘, 𝑘 = 1, 3̅̅ ̅̅̅, 

during a summer day in 2023. The CV(RMSD) metric is 

computed for three different measurement windows: 15 min., 

30 min. and 1 h respectively, while the aggregation is 

performed on a 𝑇𝑎= 2 h window. 

 

 

Fig. 4 – Voltage signal on phase 1 (𝑈1), on 21st July, measured value 

(blue), assumed constant model (red) on 𝑇𝑟=1 h. 

Figure 4 presents the daily voltage profile for the first 

phase (𝑈1) on 21 July 2023, while Fig. 5 presents the 

CV(RMSD) values computed for the signal in Fig. 4 using 

𝑇𝑟=1 h, 𝑇𝑎=2 h. It can be observed that the maximum value 

is 0.78 %, reported at the end of the 𝑇𝑟21 window at 21:00. 

 

 

Fig. 5 – CV(RMSD) for the voltage 𝑈1 in Fig. 4. 



174 Voltage variability assessment in power systems 4 

 

We repeat the procedure for the other two phases 𝑈2 and 

𝑈3, on, 21 July 2023, and the CV(RMSD) results are 

presented in Table 1. In the table we observe that the maxim 

CV(RMSD) value for 𝑈2 is 1.68 %, depicted at 1:00. The 

maxim value for 𝑈3 is 2.32 % at the end of 𝑇𝑟16.  

Table 1 

CV(RMSD) for voltage (RMS values) on 21st July 2023, 𝑇𝑟 = 1 h 

𝑇r 
Reporting 
interval 

[hh:mm:ss] 

CV(RMSD) 

for 𝑈1 

[%] 

CV(RMSD) 

for 𝑈2 

[%] 

CV(RMSD) 

for 𝑈3 

[%] 

𝑇r1 
[00:00:00-

1:00:00) 
0.61 1.68 1.70 

… … … … … 

𝑇r16 
[15:00:00-

16:00:00) 
0.55 0.83 2.32 

… … … … … 

𝑇r21 
[20:00:00-

21:00:00) 
0.78 0.46 0.43 

… … … … … 

𝑇r24 
[23:00:00-

24:00:00) 
0.39 0.55 0.40 

Figure 6 presents daily voltage profile for the first phase 

(𝑈1) on 21 July 2023, while Fig. 7 presents the CV(RMSD) 

values computed for the same signal using 𝑇𝑟  = 30 min, 

𝑇𝑎  = 2 h. It can be observed that the maximum value is 

0.72 % for reported window 𝑇𝑟30, at 15:00. We repeat the 

procedure for the voltages on the other two phases (𝑈2, 𝑈3 ), 

on 21 July 2023, with  𝑇r = 30 min and the CV(RMSD) 

results are presented in Table 2, where we can observe that 

the maximum value is 2.34 % for 𝑈2 and 2.57 % for 𝑈3. 

 

 

Fig. 6 – Voltage signal on phase 1 (𝑈1), on 21st July, measured value 

(blue), assumed constant model (red) on 𝑇𝑟= 30 min. 

 

 

Fig. 7 – CV(RMSD) for the voltage 𝑈1 in Fig. 6. 

We repeat the procedure for the voltages on the other two 

phases (𝑈2,𝑈3), on 21 July 2023, with  𝑇r = 15 min. Results 

are presented in Table 3, where we can observe that the 

maximum value is 3.3 % for 𝑈2 and is 2.32 % and 3.28 % for 

𝑈3. Figure 8 presents daily voltage profile for the first phase 

(𝑈1) on 21 July 2023, while Fig. 9 presents the CV(RMSD) 

values computed for the signal in Fig. 8 using 𝑇𝑟 = 15 min, 

𝑇𝑎  = 2 h. It can be observed that the maximum value is find 

in window 𝑇𝑟21 at 10:15 and is 0.91 %. 

 

 

Fig. 8 – Voltage signal on phase 1 (𝑈1), on 21st July, measured value 

(blue), assumed constant model (in red) on 𝑇𝑟 = 15 min. 

 

 

Fig. 9 – CV RMSD) for the voltage 𝑈1 in Fig. 8. 

Table 2 

CV(RMSD) for voltage (RMS values) during 21 July 2023, 𝑇𝑟 = 30 min 

𝑇r Reporting 

interval 
[hh:mm:ss] 

CV(RMSD) 

for 𝑈1 

[%] 

CV(RMSD) 

for 𝑈2 

[%] 

CV(RMSD) 

for 𝑈3 

[%] 

𝑇r1 
[00:00:00-

0:30:00) 
0.38 2.34 2.37 

𝑇r2 
[00:30:00-

01:00:00) 
0.34 0.29 0.34 

… … … … … 

𝑇r30 
[14:30:00-

15:00:00) 
0.72 0.87 2.57 

… … … … … 

𝑇r47 
[23:00:00-

23:30:00) 
0.49 0.46 0.24 

𝑇r48 
[23:30:00-

24:00:00) 
0.25 0.49 0.34 
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Table 3 

CV(RMSD) for voltage (RMS values) during 21 July 2023, 𝑇𝑟 = 15 min 

𝑇r Reporting 
moment 

[hh:mm:ss] 

CV(RMSD) 

for 𝑈1 

[%] 

CV(RMSD) 

for 𝑈2 

[%] 

CV(RMSD) 

for 𝑈3 

[%] 

𝑇r1 
[00:00:00-

00:15:00) 
0.25 3.30 3.28 

… … … … … 

𝑇r41 
[10:00:00-

10:15:00) 
0.91 0.79 0.91 

𝑇r42 
[10:15:00-

10:30:00) 
0.34 0.47 0.23 

… … … … … 

𝑇r96 
[23:45:00-

24:00:00) 
0.28 0.29 0.22 

 

4. WEEKLY VOLTAGE VARIABILITY 

ASSESSMENT 

We analyzed the voltage profile during one week in April 

2023 to better understand voltage variability. For this 

assessment, we performed CV(RMSD) calculations with two 

reporting rates (1 and 4 frames per hour, respectively) and 

𝑇a= 2 h. We applied eq. (7) considering that the presumed 

model value �̅�𝑝 is the nominal voltage (�̅�𝑝 =  𝑈𝑛).  

Table 4 presents the maximum and minimum 

CV(RMSD) values for one week, for the three-phase 

voltage signals (𝑈1,𝑈2,𝑈3), 𝑇𝑟 = 1 h, 𝑇𝑎= 2 h. It can be 

observed that the maximum variability is on 𝑈3 where 

CV(RMSD) is equal to 3.38 % (Thursday, 08.04.2023). 

The minimum CV(RMSD) is 0.24 %, also on 

𝑈3 (Wednesday 07.04.2023). Table 5 presents the 

maximum and minimum CV(RMSD) values for one week, 

for the three-phase voltage signals (𝑈1,𝑈2,𝑈3), 

𝑇𝑟= 15 min, 𝑇𝑎  = 2 h. It can be observed that the maximum 

variability is on 𝑈3 where CV(RMSD) is equal to 3.48 % 

(Monday, 05.04.2023). The minimum CV(RMSD) is 

0.16 %, also on 𝑈3 (Saturday, 10.04.2023). 

Table 4 

CV(RMSD) during one week in April, 𝑇𝑟 = 1 

Day 𝑈1 𝑈2 𝑈3 

CV(RMSD), 𝑇r = 1 h 

max 

[%] 

min 

[%] 

max 

[%] 

min 

[%] 

max 

[%] 

min 

[%] 

05.04.2023 1.86 0.41 1.88 0.34 3.09 0.40 
06.04.2023 1.38 0.37 1.59 0.38 3.10 0.25 

07.04.2023 1.20 0.36 1.43 0.38 2.87 0.24 

08.04.2023 1.89 0.47 2.05 0.37 3.38 0.43 
09.04.2023 1.20 0.33 1.03 0.37 1.80 0.31 

10.04.2023 1.50 0.36 1.94 0.34 2.46 0.30 

11.04.2023 1.19 0.35 1.88 0.40 2.04 0.25 

Table 5 

CV(RMSD) during one week in April for 𝑇𝑟 = 15 min 

Day 𝑈1 𝑈2 𝑈3 

CV(RMSD), 𝑇r  =15 min 

max [%] min 

[%] 

max 

[%] 

min 

[%] 

max 

[%] 

min 

[%] 

05.04.2023 1.48 0.22 1.85 0.21 3.48 0.20 

06.04.2023 1.55 0.26 2.16 0.18 2.61 0.17 
07.04.2023 1.18 0.23 2.15 0.18 2.69 0.18 

08.04.2023 1.81 0.27 2.15 0.18 2.93 0.19 

09.04.2023 1.79 0.23 1.71 0.21 2.43 0.17 
10.04.2023 1.03 0.24 1.98 0.21 3.17 0.16 

11.04.2023 1.13 0.25 1.90 0.2 2.02 0.18 

To estimate the daily voltage variability with only one 

CV(RMSD) indicator we apply eq. (7) with nominal voltage 

as the presumed model value �̅�𝑝 and 𝑇𝑟  = 2 h: 

𝑦𝑖
∗ =

∑ 𝑈𝑖
𝑁𝑟
𝑖=1

𝑁𝑟
; �̅�𝑝 = 𝑈𝑛.                          (11) 

Table 6 

CV(RMSD) values for one week in April for the assumed model 

 𝑦𝑖
∗ with 𝑇𝑟 = 2 h 

Day CV(RMSD) 

for 𝑈1 [%] 

CV(RMSD) 

for 𝑈2 [%] 

CV(RMSD) 

for 𝑈3 [%] 

05.04.2023 0.96 1.15 1.38 

06.04.2023 0.80 1.05 1.44 
07.04.2023 0.90 0.91 1.68 

08.04.2023 1.01 1.26 1.93 

09.04.2023 0.77 0.77 0.96 
10.04.2023 0.89 1.16 1.31 

11.04.2023 0.79 1.05 1.39 

 
Results for the considered week in April using the 

assumed model 𝑦𝑖
∗ are presented in Table 6. It can be 

observed that the highest CV(RMSD) value is on Thursday 
(08.04.2023) for 𝑈3. During the entire week, the CV(RMSD) 
for voltage on phase 3 was higher than 1.3 %, while for the 
other two phases CV(RMSD) was constantly lower, which 
indicates that equipment connected on phase 3 (either PV 
generation or fluctuating loads) impact on the voltage 
waveform and additional measures for improving the local 
distribution network should be considered. 

The study carried out for the considered week in April 

provides important information about assessing system 

variability in the three-phase network based on information 

measurements. Our interest is not in the global variability of 

the RMS voltage parameter but rather in its variability within 

the legacy reporting interval adopted by the power quality 

community. Our aim is to highlight that this reporting 

interval is no longer adequate. Therefore, we seek to 

demonstrate the need for a revised reporting method to better 

capture the dynamics of modern electrical networks. The 

study was conducted on a network with specific 

characteristics, affecting the results' generalizability. 

However, our idea is to propose a method to quantify the 

system variability. We plan to extend our research to include 

a variety of network environments in future studies to 

validate the generality of the proposed metric CV(RMSD) 

applied to the RMS voltage values. 

5. CONCLUSIONS 

This paper assesses the high variability of energy transfer 

in distribution networks using measured voltage signals and 

statistical methods. Specifically, the RMS of the voltage 

signal is used as the basis for the study using the coefficient 

of variation of CV(RMSD). The main output of the study is 

that the measurement systems deployed for reporting the 

RMS parameter of the voltage signal affect the quality of 

information in LV distribution networks. As such, we 

suggest employing a statistical metric, the coefficient of 

variation of the CV(RMSD), to analyze the daily and weekly 

voltage variability using three methods corresponding to the 

length of the assessment time window and implicit model, 

respectively. 

The CV(RMSD) metric provides a more accurate 

representation of voltage variation by normalizing the RMS 

deviation relative to the mean, allowing for a consistent 

comparison across different scales. Its ability to reveal 

intricate patterns of network behavior and assess temporal 

stability makes it an indispensable and useful tool for 

advancing the reliability and performance of power 
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distribution systems. Future work aims to integrate 

CV(RMSD) into standard monitoring practices and explore 

its potential in predictive maintenance algorithms to enhance 

power quality management further.  

The proposed metrics, derived from statistical tools, can 

be considered topology agnostic. They are not intended as a 

replacement for classical methods to evaluate network 

performance and variability, but they add another dimension 

to the available information and invite us to reconsider the 

steady state models and their implicit time constants for 

power flow analysis in emerging, low-inertia networks. The 

impact of the measurement chain on the results is part of a 

future endeavor. 
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