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Fractional Hammerstein models represent various nonlinear processes, such as thermal and mechanical. Their major drawback 
is the non-convex optimization problem in a nonlinear model predictive control scheme due to its static nonlinearity. Indeed, an 
efficient optimization algorithm is needed. This work proposes a hybrid optimization algorithm combining the Nelder Mead 
optimization method and the Honey Badger one to synthesize a predictive control algorithm based on fractional Hammerstein 
models. As illustrated through simulation results, the proposed method offers clear improvements in convergence and tracking 
performances.

1. INTRODUCTION 
In recent decades, nonlinear model predictive control 

(NMPC) has been considered one of the most successful 
control schemes. It has been used in several areas, such as 
energetic [1,2,3], electric [4], mechanical [5,6]. The 
applicability of the NMPC is extended to fractional 
nonlinear models. However, its application is still limited 
because the models are inaccurate. The complexity of 
controlling nonlinear dynamic fractional processes is still 
an open research topic, and the evolution of fractional 
calculus has become more attractive. Fractional models turn 
into an effective tool for representing linear and nonlinear 
systems. According to the research, the nonlinear fractional 
models are classified into several basic categories, such as 
Volterra series models [7], neural network models [8], and 
block-structured models. Among the structured models, we 
cite the Hammerstein model, which refers to a first model 
with a static nonlinearity followed by a second dynamic 
linear fractional one [9]. The Wiener structure represents an 
inverted form by a linear model followed by a static 
nonlinearity [10,11]. Combining the two previous structures 
forms the Hammerstein-Wiener models [12]. The 
Fractional Hammerstein Models (FHM) are most often 
manipulated in the literature considering their generality of 
representation. They described many processes, such as 
thermal systems [13] and mechanical systems [14]. Besides, 
FHM constitutes a powerful nonlinear modeling tool. 
Indeed, it allows the linear dynamic model theory to be 
exploited, where the nonlinearity is static. 

In the literature, research works have dealt with the control 
of integer order Hammerstein structures, such as PID control 
[15], sliding mode control [16], and predictive control [17]. 
However, we haven’t found any work dealing with the 
control of FHM, especially fractional predictive control. 
Indeed, these types of models require advanced mathematical 
tools and algorithms. Moreover, for fractional systems, the 
calculation of the optimal control uses all previous output 
and control sequences, which will enlarge the computing 
time. Therefore, to search for the control law that minimizes 
the optimization criterion, choosing the approach that 
consumes the least time to deal with fast dynamic systems 
and extends the exploitation of the microcontroller in real-
time applications will be better. In addition, the NMPC 
algorithm may encounter a non-convex optimization problem 
due to the static nonlinearity of the model.  

Furthermore, the nonlinear model predictive control can’t 
use an analytical adaptation law for the optimal control as 
in the case of linear models. Thus, a numerical optimization 
algorithm must be run at every iteration. The optimization 
methods used in treating such problems in literature are 
deterministic, geometric, or stochastic. The first type 
concerns all gradient-based techniques, such as the steepest 
descent algorithm [18], the sequential quadratic 
programming [19], and the interior point algorithm [20]. 
The Nelder Mead (NM) method [21,22] belongs to the 
second type. The third type encompasses the genetic 
algorithms [23], particle swarm optimization [24,25], honey 
badger algorithm (HB) [26–28], which is a recently 
developed metaheuristic algorithm inspired by the 
intelligent foraging behavior of HB, hybrid methods 
HBNM [29] which apply solution obtained from HB 
algorithm in the NM algorithm. We demonstrated in [30] 
the efficiency of the NM approach in solving convex and 
non-convex optimization problems. It finds the best 
solution, minimizing the criterion in a reduced time. 
However, when controlling fractional systems, the control 
vector dimension depends on the prediction horizon. 
Indeed, if the prediction horizon is high, the NM approach 
may fail to reach the best solution. Indeed, the constraint 
restriction applied to the optimization variable can cause 
divergence of the NM optimization algorithm. However, 
the HB method does not block if the dimension of the 
control vector is high or when the constraint is restricted. 
Nevertheless, searching for the best solution consumes 
more time, which can be amplified if the predictive control 
is applied to fractional systems. Indeed, controlling them 
requires using a vast number of previous input and output 
measurements, significantly enlarging the calculation time. 

This work developed a new hybrid optimization 
algorithm, NMHB, which combines the NM method with 
the HB one. This is to exploit the advantages of both 
methods and avoid their drawbacks. 
Main contributions: 
• A new hybrid method, NMHB, was developed that 

combines NM and HB algorithms to find the best 
control solution.  

• A NMPC scheme based on FHM is proposed.  
• Based on the curves of static nonlinear characteristics 

and the criterion, the non-convex optimization problem 
is converted into a convex one. 

• The rest of the paper is divided into four parts. The first 
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section details the fractional predictive control 
algorithm. The second section explains the new 
optimization algorithm NMHB used to research the 
control minimizing the quadratic criterion. Then, we 
will test the proposed algorithms by treating convex 
and non-convex optimization problems for a single 
input, single output (SISO) system, and we will 
conclude with a conclusion.  

2. NONLINEAR FRACTIONAL PREDICTIVE 
CONTROL 

The Hammerstein structure will model the nonlinear 
system as represented in the block diagram of Fig. 1.  

 
Fig. 1 – The block diagram of a Hammerstein model. 

The control signal 𝑢(𝑘)	is firstly executed by the static 
nonlinear function 𝑓(. ) and then passed through a linear 
dynamic filter described by a fractional order transfer 
function 𝐻(𝑠). The internal signal𝑦+(𝑘), which is usually 
assumed to be not measurable, is the result of the 
transformation of the input signal 𝑢(𝑘) caused by the static 
nonlinear function 𝑓(. ). The polynomial form is chosen to 
represent the nonlinear function. It is expressed as follows: 
𝑓(𝑢) = 𝑦+(𝑘) = 𝑐!𝑢(𝑘) + 𝑐"𝑢"(𝑘) +⋯+ 𝑐#!𝑢

#!(𝑘), (1) 
where 𝑛$ is the degree of the polynomial function. 

In this paper, the linear part is represented by a 
commensurate continuous fractional order transfer function 
𝐻(𝑠), defined by 

𝐻(𝑠) = %"&"#'%"$%&("$%)α'⋯'%(
))&)α'))$%&()$%)α'⋯')(

 ,                 (2) 
where 𝑎*,..., 𝑎+, 𝑏*,..., 𝑏, are constant coefficients and α 
fractional power 0	 < 𝛼 < 	1 .𝑎*,..., 𝑎+, 𝑏*,..., 𝑏,, α, 
𝑐!,...,𝑐#! is the fractional Hammerstein parameters, where 
their identification procedure is detailed in [31]. 

The predictive optimal control is calculated using the 
model describing the system's future behavior over a finite 
prediction horizon. The minimization of a quadratic criterion 
is run over time during each sampled measurement. It allows 
for synthesizing an optimal control sequence. The first 
element in the sequence is then applied to the system. We 
start the calculation again, considering updated values of 
control and output. The matrix form of the predicted output 
over a prediction horizon 𝑁- is given by: 

𝐘; = 𝐀𝐘𝒑 + 𝐁𝐩𝐘>𝒑 + 𝐁𝒇𝐘>𝒇,                     (3) 
where 𝐘; is the predicted output vector as given by	

𝐘; = [𝐲A(𝑘 + 1), 𝐲A(𝑘 + 2),… , 𝒚EF𝑘 + 𝑁-G]1         (4) 
where the old output values are saved in the vector 𝒀𝒑: 

𝐘𝒑 = [𝑦(𝑘 − 1), 𝑦(𝑘 − 2),… , 𝑦(𝑘 − 𝑁2)]1.       (5) 
The old calculated values of the internal signal 𝑦+(𝑘) are 

stored in the vector 𝐘>𝒑 
𝐘>𝒑 = [𝑦+(𝑘 − 1), 𝑦+(𝑘 − 2),… , 𝑦+(𝑘 − 𝑁2)]1,         (6) 

where 𝑁2 are the last samples taken in the fractional 
calculation. The future values of the internal signal were 
saved in the vector 𝐘>𝒇 as given by 

𝐘"𝒇 =

⎣
⎢
⎢
⎡

𝑦((𝑘)
𝑦((𝑘 + 1)

⋮
𝑦(/𝑘 + (𝑁" − 1)2⎦

⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡ ∑ 𝑐#𝑢#(𝑘)

$!
#%&

∑ 𝑐#𝑢#(𝑘 + 1)
$!
#%&

⋮
∑ 𝑐#𝑢#(𝑘 + (𝑁" − 1))
$!
#%& ⎦

⎥
⎥
⎥
⎤
.    (7) 

The elements of the matrix 𝐴 are calculated in terms of 
𝑎ℎ3 illustrated by 

𝑎ℎ3 = −µ∑ ))
4)#

5
+6* ∑ (−1)3 O𝑙α𝑖 R .

7
36!                  (8) 

The elements of the matrix 𝐵- and 𝐵8 are calculated in 
terms of 𝑎ℎ7 and 𝑏ℎ7 expressed by eq. (8) and (9): 

𝑏ℎ7 = µ∑ %"
4"#

9
,6* ∑ (−1)3 O𝑚α𝑖 R

7
36! ,                   (9) 

where h is the sample period, µ = !
∑ *)

+)α
,
)-(

, O𝑙α𝑖 R and O𝑚α𝑖 R 

are Newton’s binomial generalized to non-integer orders. 𝐿 
and 𝑀 are the number of derivations on the output and the 
input. More details on	𝑎ℎ3 and 𝑏ℎ7 calculation is developed 
in [32]. 

The dynamic criterion 𝐽(𝑘) will be minimized to 
determine the optimal predictive control solution at each 
sample iteration 𝑘. This cost function expresses, in a first 
term, the summed squared differences between the future 
set-points and the predicted outputs within a prediction 
horizon 𝑁-. The second term contains the sum of squares 
future control increments within a control horizon 𝑁$. The 
criterion is given in matrix form [33] by 

𝐽(𝑘) = !
"
[𝐘𝒓(𝑘) − 𝐘)(𝑘)]$𝐐,𝐘𝒓(𝑘) − 𝐘)(𝑘)- + ∆𝐔1(𝑘)𝑻𝐑∆𝐔1(𝑘)(10) 

where 𝐘𝒓(𝑘) is the set-point vector expressed by: 
𝐘𝒓(𝑘) = X𝑦<(𝑘 + 1), 𝑦<(𝑘 + 2),… , 𝑦<F𝑘 + 𝑁-GY

1,    (11) 
where 𝑦<(𝑘) is the set-point and ∆𝑼\(𝑘) is the control 
increment vector defined by 

∆𝐔\(𝑘) = 𝐔(𝑘) − 𝐔(𝑘 − 1),                  (12) 
∆𝐔\(𝑘) = [∆𝐔(𝑘), ∆𝐔(𝑘 + 1),… , ∆𝐔(𝑘 + (𝑁$ − 1))]= 

𝐔(𝑘) = [𝑢(𝑘), 𝑢(𝑘 + 1),… , 𝑢F𝑘 + 𝑁- − 1G]= 
where 𝐐 is the weight matrix of the prediction error and 𝐑 
is the weight matrix of the control increment used to 
minimize the control energy? It should be noted that, at 
each iteration, an optimization problem with 𝑁-unknown 
variables will be resolved, because the vector 𝑼(𝑘) 
contains 𝑁- control values. Whereas just the first 
component 𝑢(𝑘) of the optimal control vector 𝐔(𝑘) will be 
applied to the system. In the following, let consider the 
constrained optimization problem of several variables of the 
criterion 𝐽(𝑘) versus the control vector 𝑼(𝑘). The method 
explained below attempts to solve an optimization problem 
of the form 

𝑚𝑖𝑛
𝑼(2)	

𝐽(𝐔(𝑘)) subject to 𝑢,3# ≤ 𝑢(𝑘) 	≤ 𝑢,)B, 

where 𝑢,3# and 𝑢,)B are, respectively, the lower and upper 
bounds of the control. 

3. NMHB OPTIMIZATION METHOD 
The nonlinearity in polynomial FHM is static and has the 

expression (1). The minimization of the criterion (34), which 
degree is equal to 2𝑛$ involves generally a non-convex 
optimization problem. Indeed, the derivative degree becomes 
2𝑛$ − 	1 and there exist at most 2𝑛$ − 	1 solutions in which 
𝑛$ − 	1	are bad ones corresponding to critical points of the 
nonlinear characteristic. These points correspond to minima 
or maxima in the static output-input curve. These unwanted 
solutions involve the failure of gradient-based methods by 
trapping their optimization algorithms due to the null 
derivatives. Whereas the other 𝑛$ solutions corresponding to 
minima of the static objective function 𝐽 giving the optimal 
control solutions. The only difference is the energy the 
system consumes when the control law switches between 
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several values. Thus, we will focus only on the best solution 
which ensures the minimum variations Δ𝑢 control inputs. 
This can be realized by tightening the control domain using 
constraints with 𝑢,3# and 𝑢,)B around the best solution. The 
objectives of this work, in addition to the best tracking 
performances, are minimum energy consumption and short 
computing time to deal with real-time NMPC. The NMHB is 
a numerical method which minimizes a continuous function 𝐽 
in a space of 𝑁- dimension. It exploits the concept of 
simplex, which is used in the NM method, a polygon with 
vertice numbers equal to several researched variables plus 
one (𝑁- 	+ 	1). The objective function 𝐽 evaluated at each 
vertex. Then, the vertices are sorted, and the worst point is 
changed by its symmetric versus the polygon gravity center. 
The initial simplex is transformed during the iterations, 
deformed, moved, and gradually reduced approaching to the 
minimum 𝐔∗of the objective function 𝐽(𝑘). The following 
algorithm explains briefly the proposed NMHB optimization 
approach. 

Initialization: Choose the maximum number of iterations 
𝑁,, sort the initial variables to verify the inequality 𝐽F𝐔𝟏𝟎G <
𝐽F𝑼𝟐𝟎G <. . . < 𝐽(𝑼𝑵𝒑	'𝟏

𝟎 ). The initial simplex tops are 
formed by 𝐔𝒊𝟎, 𝑖	 ∈ [1,… ,𝑁- 	+ 1] 
Loop on 𝑖, 𝑖 ∈ 	 [1. . . 𝑁,] 

– Compute the simplex gravity center: 𝐔𝒄 =
!
J/
∑ 𝐔𝒋𝒊
J/
76*  

– Compute the reflection of 𝐔𝑵𝒑	'𝟏
𝒊  compared to 𝐔𝒄: 

𝐔𝒓 	= 	𝐔𝑵𝒑	'𝟏
𝒊 + 2𝑑3 where 𝑑3 = 𝐔𝒄 −𝐔𝑵𝒑	'𝟏

𝒊  
– If 𝐽(𝐔𝑵𝒑 	) 	> 𝐽(𝐔𝒓) 	≥ 𝐽(𝐔𝟏𝒊 )  then 𝐔∗ =	𝐔𝒓	
– If 𝐽(𝐔𝒓) < 𝐽(𝐔𝟏𝒊 ) then the simplex will be expanded: 
– 𝐔𝒆 	= 	𝐔𝑵𝒑	'𝟏

𝒊 + 3𝑑3 
– If 𝐽(𝐔𝒆) 	> 𝐽(𝐔𝒓) then  𝐔∗ =	𝐔𝒆 else then 𝐔∗ =	𝐔𝒓 
– If 𝐽(𝐔𝒓) 	≥ 	𝐽(𝐔𝑵𝒑

𝒊 ) then, the simplex will be 
contracted: 
– If 𝐽(𝐔𝒓) ≥ 𝐽 O𝐔𝑵𝒑	'𝟏

𝒊 R then 𝐔∗ =	𝐔𝑵𝒑	'𝟏
𝒊 + !

"
𝑑3 	

– If 𝐽(𝐔𝒓) < 𝐽 O𝐔𝑵𝒑	'𝟏
𝒊 R	then 𝐔∗ =	𝐔𝑵𝒑	'𝟏

𝒊 − M
"
𝑑3 

– If the maximum number 𝑁, has not reached 𝐔𝑵𝒑	'𝟏
𝒊 =

𝐔∗, 𝐔𝒋𝒊'𝟏 = 𝐔𝒋𝒊1j , 𝑗 ∈ [1, . . . , 𝑁-], 𝑖	 = 	𝑖	 + 	1 and repeat 
the loop. Else if 𝑑3 > 𝜀 use HB function, 𝜀 is the desired 
precision. 

Checking constraints: 𝑢∗ =	𝐔∗(1) 
– If 𝑢∗ < 𝑢,3# then use the HB function 
– If 𝑢∗ > 𝑢,)B then use the HB function 
The pseudo-code of the HB function is detailed in [23]. 

Initialization: Initialize the position of nB honey badgers:  
𝐔𝒊 = 𝑢,3# + 𝑟!(𝑢,)B − 𝑢,3#	)𝑡,)B, where 𝑡,)B is the 
maximum number of iterations. 

Step 1: 
– while 𝑡 ≤ 𝑡,)B do (loop on 𝑖) 
– Compute the density factor: β	 = 	2	exp(	 NO

O"*0
) 

– For 𝑗	 = 	1 to 𝑛𝐵 do 
     – Defining intensity: 𝐼7 	= 	 𝑟"

P
QRS1

2, 𝑆 = (𝐔𝒋 −𝐔𝒋'𝟏)", 

𝑑7 = 𝐔∗ −𝐔𝒋 
     – If 𝑟T < 0.5	then  
𝐔𝒊 =	𝐔∗ + 6𝐼7𝐔∗ + 𝑟Mβ𝑑7cos(2π𝑟Q)(1 − cos(2π𝑟U)) ∥ 
Else 𝐔𝒊 = 𝐔∗ − 𝑟Vβ𝑑7 	
     – If 𝐽(𝐔𝒊) ≤ 𝐽(𝐔𝒋) then 𝐔𝒋 =	𝐔𝒊 and 𝐽(𝐔𝐣) = 𝐽(𝐔𝒊) 

     – If 𝐽(𝐔𝒊) ≤ 𝐽(𝐔∗) then	𝐔∗ =	𝐔𝒊and 𝐽(𝐔∗) = 𝐽(𝐔𝒊). 
Step 2:  𝑢∗ =	𝐔∗(1) 
– If 𝑢∗ < 𝑢,3# then 𝑢∗ =	𝑢,3# 
– If 𝑢∗ > 𝑢,)B then 𝑢∗ =	𝑢,)B 

where 𝑟!, 𝑟", 𝑟M, 𝑟Q, 𝑟U, 𝑟T and 𝑟V are random numbers 
between 0 and 1. 

This hybrid method is proposed to exploit the advantages 
of the two methods. Indeed, the NM method is a fast 
convergence algorithm, and the HB method uses extended 
exploration. In addition, we take away their drawbacks: 
failure with multidimensional problems for NM and high 
oscillations for HB.  

4. SIMULATION RESULTS 
This part deals with the nonlinear system with the 

Hammerstein structure. We will consider models where the 
search for the best control law is a convex or non-convex 
optimization problem. We will compare the system tracking 
performances of stability, accuracy, and speed when we 
employ the NM and HB optimization algorithms with their 
hybrid approach NMHB. The NMPC is verified under the 
MATLAB environment. 

4.1 MODEL 1 
The fractional Hammerstein expression of the following 

model is detailed in the reference [31]: 
 

w
𝑦+(𝑘) = 1.6174𝑢M(𝑘),

𝐻(𝑠) = !.VMYVZ(.4566'".!T*!
*.Y[U"&%.4574'!.VQMY&(.5587'M."![U&(.4566'!

,
     (13) 

where 𝑦(𝑘) is the output, 𝑢(𝑘) is the control and 𝑦+(𝑘) = 𝑓(𝑢) 
the nonlinear signal is nonmeasurable. 

Let 𝑁& be the whole number of considered samples and ℎ 
sampling period. The fractional predictive algorithm is 
simulated using the following parameters: 𝑁$ = 1; 𝑁& = 120; 
ℎ	 = 0.1; 𝐑 = 	0.1𝐈; 𝐐 = 	𝐈; where 𝐈 is the identity matrix.  

The curve plotted in Fig.2 represents the evolution of the 
static nonlinear characteristic. 

 
Fig. 2 – The static nonlinearity of model (13) for 𝑦& swaying  

between 8 and -3. 

We notice from the curve given in Fig. 2 that each desired 
set-point corresponds to only one control value (𝑦< = 8 
correspend to 𝑢 = 1.5 and 𝑦< = −3 correspend to 𝑢 = 1.1), 
illustrated by the static criterion curve traced in figures 3 and 4 
corresponding to the set-point values 𝑦< = 8 and 𝑦< = −3. 
Therefore, for this example, the research of the optimal control 
𝑢∗(𝑘) minimizing the criterion 𝐽(𝑘) which is a convex 
optimization problem. However, the curve of the minimized 
criterion changes with the prediction horizon 𝑁-. Indeed, small 
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values of 𝑁-, the curve presents a palliate around the inflection 
point  (0, 0) of the characteristic in Fig. 2. In fact, the palliate is 
larger when 𝑁- decrease.  

 
Fig. 3 – The objective function 𝐽of model (13) for 𝑦& = 8. 

 
Fig. 4 –The objective function 𝐽 of the model (13) for 𝑦& = 	−3. 

The prediction horizon 𝑁- appears in eq. (10), then it will 
influence the shape of the static objective function curve and 
the temporal response. Therefore, we will start by comparing 
the behavior of the system using the NM and HB methods for 
different values of the prediction horizon 𝑁-. The curves 
plotted in Fig. 5 and 6 illustrate the temporal responses and the 
control evolution obtained, respectively, with NM and HB 
methods for 𝑁- = 	3, 𝑁- = 5, and 𝑁- = 8. 

Curves drawn in Fig. 5 and 6 indicate that the search for 
the optimal control minimizing the criterion 𝐽(𝑘) depends on 
the prediction horizon 𝑁-. In fact, when using NM method, 
for the prediction horizon 𝑁- = 	8 , and the output succeeds 
in tracking the set-point changes. Meanwhile for 𝑁- = 3	and 
𝑁- = 5, the output fails when trapped in a palliate. This is 
explained by the fact that the simplex of the NM approach 
degenerates if the criterion curve presents a palliate. This is 
demonstrated in the curves illustrated in Fig 3 and 4 around 
𝑢 = 	0. However, with the HB algorithm, the output 
successfully tracks the set-point changes.  

Nevertheless, both output and control signals present 
considerable oscillations. Indeed, this method, which uses the 
HB strategy, evaluates the criterion for a large population to 
search for the best solution. It uses a flag to change the search 
direction to get high opportunities to explore the search space 
extensively. Therefore, it succeeds in reaching the best 
solution. 

In this work, the NMHB algorithm is proposed to combine 
the two methods, NM and HB obtain a response without 
oscillations and independent of the dimension of the control 
vector 𝑼, which is 𝑁-.  

The curve plotted in Fig. 7 represents the temporal 
responses evolution when using NMHB algorithm for 𝑁- =
5 compared to a gradient-based method trust region (TR) and 
NM and HB methods.  

 

 
Fig. 5 – The temporal responses and the control law using the NM method. 

 
Fig. 6 –The HB method's temporal responses and control law. 

 
Fig. 7 – The temporal responses and the control law using TR, NM, HB, 

and NMHB methods for 𝑁' = 	5. 

By comparing the responses obtained using NMHB to 
those obtained using TR, NM, and HB methods, the new 
algorithm NMHB succeeds in finding the best solution, 
unlike that of NM which diverges due to the simplex 
degeneration in the palliate around the point (0,0).  The 
divergence of the gradient-based method TR is explained by 
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the little value of gradient obtained into the palliate presented 
in Fig. 3. With the HB algorithm, the output converges to the 
set-point. However, it presents oscillations for the control and 
output signals. 

Table 1 contains the control signal variance (𝜎() and the 
mean squared error (𝑚𝑠𝑒) calculated for the four methods.  

Table 1 
The control signal variance and the squared mean error. 

Optimization methods TR NM HB NMHB 
𝜎( 0.6959 0.4735 0.3748 0.3600 
𝑚𝑠𝑒 22.3663 10.9508 0.6489 0.5689 

 
Table 1 illustrates the simulation of Fig. 7. The NMHB 

approach gives better tracking performances in terms of the 
control signal variance 𝝈𝒖 = 0.36 and the mean squared error 
𝑚𝑠𝑒 = 0.5689. 

4.2 MODEL 2 
The model (14) represents a SISO system with a 

polynomial structure expressing the nonlinear function. The 
following FHM, given by (14), is detailed in [34]: 

!
𝑦#(𝑘) = 0.0548𝑢(k) + 	0.0041𝑢"(𝑘) + 	0.1877𝑢#(𝑘)– 	0.0306𝑢$(𝑘),

𝐻(𝑠) = %
".$''"(!.#$$$)$.$'*+

,  (14) 

where 𝑦(𝑘), 𝑢(𝑘) and 𝑦+(𝑘) 	= 	𝑓(𝑢) are as defined in the 
previous examples. 

The curve plotted by Fig. 8 represents the evolution of 
the static nonlinear characteristic of 𝑦	and the static 
criterion 𝐽 versus the control 𝑢. 

 
Fig. 8 – The static nonlinearity of the model (14) and the 
objective function 𝐽. 

The nonlinear characteristic given in Fig. 8 shows that 
for the same set-point, there correspond two control values 
minimizing the criterion 𝐽 for each set-point value. 
However, for the set-point value 𝑦< = 0.5, the static 
criterion presents two weak minima for 𝑢 = 2.8 and 𝑢 =
5.8 and involve a large palliate. When considering the two 
solutions, the energy consumption increases for each set-
point value as the control switches two distant values. It 
also enlarges the calculation time. For this reason, we will 
reduce the search domain using tightened constraints 
𝑢,3# 	= 	−5 and 𝑢,)B = 	5 around the best solution and is 
close to zero. 

Figure 9 depicts the temporal responses of the model (14) 
for 𝑁- = 5. Curves plotted in Fig. 9 show that when 
reducing the constraints around the best solution the NM 
algorithm is trapped in the upper limit of the constraint, 𝑢 =
5, corresponding to the critical point of the characteristic of 
Fig. 8 for 𝑦< = 0.5. This is due to the swaying of the 

algorithm to the other solution which is 𝑢	 = 	5.8. 

 
Fig. 9 – The temporal responses and the control law for 𝑁* = 5. 

This is a drawback of the NM method. As for the HB 
algorithm, it allows the output to reach the set-point (𝑦< =
0.5) but with the presence of oscillations. As for the TR 
algorithm, it diverges by being trapped in a critical point 
(𝑢 = 5) due to the null value of the gradient. However, 
when using the NMHB method, the insufficiencies cited 
above are remedied. Therefore, the hybridized NMHB 
algorithm achieves the best tracking performances in a 
reduced calculation time compared to that consumed by the 
HB algorithm. 

5. CONCLUSION 
In this work, we have developed a predictive control for 

nonlinear systems represented by FHM. We employed the 
optimization methods studied in the literature, such as the 
NM and HB algorithms, for fractional calculations. Then, 
we proposed a new algorithm, NMHB, taking advantage of 
both methods. We profit from the power of the NM 
approach to solve the optimization problem in the least 
computing time, and we exploit the HB method, which 
deals with issues of enormous dimensions and copes with 
local and global optimization problems. Two forms of 
nonlinear characteristics, as well as different orders of 
transfer functions and different nonlinearity degrees, are 
exploited to study the efficiency of the new approach. The 
static nonlinear characteristic and the criterion are used to 
tighten the control constraints around the best solution, 
convert a non-convex optimization problem into a convex 
one, and guide algorithms' convergence toward the best 
solution that consumes the least energy. 

In future work, the optimization algorithm will be 
improved by minimizing calculation time to deal with fast 
dynamic systems such as robots. Furthermore, the proposed 
predictive controller will be applied to real processes. 
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