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This paper proposes new real-valued damped sinusoid frequency and damping factor estimators. They exploit a three-point Interpolated 
discrete Fourier transform (IpDFT) algorithm based on the Rife-Vincent class I (RVCI) windows and complex-valued DFT samples. The 
accuracies of the proposed estimators are compared with those provided by other state-of-the-art interpolated Fourier algorithms using 
computer simulations when pure, noisy, and noisy and harmonically distorted damped sinusoids are analyzed.  
 

1. INTRODUCTION 
Real-valued damped sinusoids are used in many 

application domains, such as radar, optics, mechanical 
spectroscopy, and power systems [1–6]. The interpolated 
discrete Fourier transform (IpDFT) algorithms are often used 
since they ensure fast and accurate estimates of damped 
sinusoid parameters [3–10]. These algorithms reduce the 
picket-fence effect due to the finite number of analyzed 
samples by interpolating two or more suitably selected 
Discrete Fourier Transform (DFT) samples of the analyzed 
signal [11]. Interpolating more than two DFT points enables 
compensation for the detrimental contribution of the 
fundamental image component to the estimated parameters. 
Signal windowing is also adopted to reduce the contribution 
of the image component's spectral interference and other 
spurious tones [12–15]. The Rife-Vincent class I (RVCI) 
windows are often employed since they provide 
straightforward interpolation expressions [10,16]. These 
windows are also called maximum sidelobe decay (MSD) 
since they exhibit the highest sidelobe decay rate among all cosine 
windows with a given number of terms [13], thus ensuring 
optimal long-range spectral leakage reduction.  

In [6], a three-point IpDFT algorithm for real-valued 
damped sinusoid parameter estimation has been proposed. It 
is based on the H-order RVCI windows, called the RVCI–H 
algorithm, as shown below. Frequency and damping factor 
estimators are obtained using two different interpolation 
functions based on selected DFT module samples. This paper 
presents a three-point IpDFT algorithm that exploits 
complex-valued DFT samples, which returns frequency and 
damping factor estimates evaluating only one interpolation 
function. Based on the H-order RVCI window, the procedure 
is called the Complex RVCI-H (CRVCI-H) algorithm. The 
accuracy of the CRVCI-H algorithm is compared with that 
of the RVCI-H algorithm and with those of other state-of-
the-art interpolated Fourier algorithms through computer 
simulations considering real-valued pure, noisy, and noisy 
and harmonically distorted damped sinusoids. 

2. THE RVCI-H AND THE CRVCI-H ALGORITHMS 
The analyzed noisy discrete-time damped sinusoid is 

expressed as: 

 s(m)	=	x(𝑚) + 𝑒(𝑚), 𝑚 = 0, 1,… ,𝑀 − 1. (1) 

where 𝑥(𝑚) = 𝐴𝑒!
!"
#"#cos 42π $

%
𝑚+ϕ8. 

In (1) x(∙) is the noise-free damped sinusoid of amplitude 
A, normalized frequency n, phase f, and normalized 
damping factor a, e(∙) is an additive white Gaussian noise 
with zero mean and variance σ&' , and M is the number of 
acquired samples. The signal-to-noise ratio (SNR) of signal 
(1) is defined as 𝑆𝑁𝑅 ≝ (!

')$!
.  

The signal normalized frequency can be written as: 

 n = l + d, (2) 

where l and d (-0.5 £ d < 0.5) are the integer part and the 
fractional of n, respectively, it is worth noticing that d 
represents the inter-bin frequency location, which is null 
when coherent sampling occurs.  

Signal windowing is applied to reduce the contribution of 
the spectral interference on the frequency and the damping 
factor estimates due to the image component and possible 
spurious tones. Thus, the analyzed signal becomes  𝑠*(𝑚) =
𝑠(𝑚) ∙ 𝑤(𝑚). The adopted weighting function is the H-order 
RVCI window, defined as:  

 𝑤(𝑚) = ∑ (−1)+𝑎+,
+-. cos 4'/+#

%
8 ,𝑚 = 0,1,… ,𝑀 − 1,(3) 

where 𝑎. =
0!%
%

'!%
	and	𝑎+ =

0!%
%&'

'!%&(
, ℎ = 1, 2, … ,𝐻,	with 𝐶1

2 =
1	!

(1!2)	!	∙	2	!
, are the window coefficients [17]. 

The discrete-time Fourier transform (DTFT) of the 
weighted signal sw(∙) is given by: 

 𝑆!(ϑ) = 𝑋!(ϑ) + 𝐸!(ϑ), (4) 

where Xw(∙) and Ew(∙) are the DTFTs of the noise free 
weighted damped sinusoid xw(m) = x(m)∙w(m) and weighted 
wideband noise ew(m) = e(m)∙w(m), respectively. Xw(∙) can 
be expressed as: 

 𝑋!(ϑ) = 𝑋)!(ϑ) + 𝑋)"!(ϑ), (5) 

where 𝑋K*(ϑ) and 𝑋K8*(ϑ) are the transforms of the 
fundamental component and the x(m) spectral image, 
respectively. They are given by [10]: 

 
 𝑋K*(ϑ) ≅ 𝑓Nα + 𝑗(ϑ − ν)O𝑒9:, (6) 

and 
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 𝑋K8*(ϑ) ≅ 𝑓Nα + 𝑗(ϑ − ν)O𝑒!9:, (7) 

where 

 𝑓(𝑧) ≝ ($%)!
$!"#!

()
*

+,-.$	!&'/
0 ∏ (0!23!)"

()*
,		z	∈	ℂ. (8) 

The RVCI-H algorithm estimates the inter-bin frequency 
location and the damping factor by using the following two 
different interpolation functions [6]: 

 δT = − ',;<
'

=()!=!)
'(,;<)=()=!)!=()!=!)!',

, (9) 

and  

 αV=WX>δ
@+HC2-R1m>δ@-H-1C

2

R1m-1
X ,  (10) 

where 𝑅<# ≝ |H-(I;<)|!

|H-(I)|!
 and 𝑅'# ≝ |H-(I!<)|!

|H-(I)|!
.  

Unlike [6], (10) considers the expression module under the 
square root since it may become negative due to the 
contribution of the spectral image component. Moreover, it 
is worth noticing that the estimator αV depends on the 
estimator δT , and so is its accuracy.  

As shown in the Appendix, the proposed CRVCI-H 
algorithm uses a single interpolation function, that is: 

 ℎ = − ',;<
'

=(.!=!.
'(,;<)=(.=!.!=(.!=!.!',

, (11) 

where 𝑅<J ≝
H-! (I;<)
H-! (I)

 and 𝑅'J ≝
H-! (I!<)
H-! (I)

. 
The inter-bin frequency location and the damping factor 

estimators are then derived from (11), simply as (see (A.5) 
in Appendix): 

 δK = 𝑅𝑒{ℎ},   and    α[ = 𝐼𝑚{ℎ}. (12) 

Observe that (11) coincides with (9), except that complex-
valued DFT samples are used instead of DFT module 
samples. Also, unlike the RVCI-H algorithm, the damping 
factor estimator α[ provided by the CRVCI-H algorithm, it 
does not depend on the estimator δK. Therefore, its accuracy 
is expected to be better than that of the estimator αV supplied 
by the RVCI-H algorithm, as shown next. 

3. ACCURACY COMPARISON 
This section compares the RVCI-H and the CRVCI-H 

algorithms' accuracies using simulations considering pure, 
noisy, and harmonically distorted damped sinusoids. The 
results returned by the classical two-point IpDFT algorithm 
[9] and the (two-point iterative) Aboutanios algorithm [3] are 
also considered when noisy and noisy and harmonically 
distorted signals are analyzed. Two iterations are performed 
in the latter algorithm [3]. The simulated signal parameters 
are amplitude A = 1 p.u., damping factor a = 0.1, and record 
length M = 512 samples. When pure damped sinusoids are 
analyzed for each frequency value, the signal phase f is 
linearly changed in the range [0, 2p) rad with a step of p/50 
rad. The maximum absolute values of the parameter 
estimation error, |Dd|max and |Da|max, are then determined. 
Conversely, when noisy damped sinusoids are considered, 
10,000 runs are processed for each variable parameter value, 
and the signal phase f is randomly chosen in the range [0, 
2p) rad. Accuracy is then assessed using the root mean 
square error (RMSE) or the normalized RMSE (NRMSE). 

This latter parameter is the ratio between the estimation 
RMSE and the square root of the related asymptotic Cramér-
Rao lower bound (CRLB) [18].  

The simulation results obtained are presented below. 

REAL-VALUED PURE DAMPED SINUSOIDS 
Figure 1 shows the maximum of the absolute values of the 

estimation errors, |Dd|max (Fig. 1(a)) and |Da|max (Fig. 1(b)), 
returned by both the RVCI-H and the CRVCI-H algorithms 
as a function of the number of analyzed signal cycles n, 
which varies in the range [1.5, 8) with a step of 0.1 cycles. 
The rectangular (H = 0) and the two-term MSD (H = 1) or 
Hann windows are used.  

 
(a) 

 
(b) 

Fig. 1 – Real-valued pure damped sinusoids: maximum absolute value of 
the frequency |Dd|max (a) and the damping factor |Da|max (b) estimation 

errors of the RVCI-H and the CRVCI-H algorithms based on the rectangular 
and Hann windows versus the number of acquired signal cycles n. M = 512 

samples, signal phase f linearly changed in the range [0, 2p) rad.  

Figure 1 shows that the RVCI-H and the CRVCI-H 
algorithms are almost equally accurate when the frequency 
is estimated. Conversely, the CRVCI-H algorithm returns 
much better when assessing the damping factor. Also, low 
accuracy is obtained when the rectangular window is used. 
This occurs since that window does not significantly reduce 
the detrimental contribution of the spectral image 
component. For this reason, only the Hann window is 
considered in the following. 

REAL-VALUED NOISY DAMPED SINUSOIDS 
Figure 2 shows the NRMSEs of the inter-bin frequency 

location (Fig. 2(a)) and the damping factor (Fig. 2(b)) 
estimates returned by the considered algorithms as a function 
of the number of analyzed cycles, which varies in the range 
[1.5, 10) with a step of 0.1 cycles. The SNR is 50 dB. 

As expected from the results reported in Fig. 1, the inter-
bin frequency location estimates provided by the RVCI-1 
and CRVCI-1 algorithms are almost equally accurate. In 
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contrast, the CRVCI-1 algorithm offers much more precise 
damping factor estimates than the RVCI-1 algorithm. Also, 
when n it is smaller than about 7 cycles (situations where the 
contribution of the spectral image component dominates the 
effect of noise), the CRVCI-1 algorithm outperforms the 
two-point IpDFT algorithm almost everywhere. In contrast, 
the Aboutanios algorithm provides the most accurate 
estimates when |d| is quite close to 0.5 bins. Conversely, 
when n it is higher than about seven cycles (situations where 
the effect of noise overcomes that due to the spectral image 
component), all considered algorithms exhibit close 
accuracies, except the RVCI-1 algorithm, which provides 
relatively poor damping factor estimates. 

 
(a) 

 
(b) 

Fig. 2 – Real-valued noisy damped sinusoids: NRMSEs of the inter-bin frequency 
location (a) and the damping factor (b) obtained by the classical two-point IpDFT 
[9], the Aboutanios [3], the RVCI-1, and the CRVCI-1 algorithms versus the 
number of acquired signal cycles n when SNR = 50 dB. Ten thousand runs of M = 
512 samples, each with signal phase f changed at random.  

Figure 3 shows the RMSEs of the inter-bin frequency 
location (Fig. 3(a)) and the damping factor (Fig. 3(b)) 
estimates ensured by the considered algorithms as a function 
of the SNR, which varies in the range [-10, 60] dB with a 
step of 5 dB. The length of the observation window is n = 3.3 
cycles. In addition, the √CRLB shown in Fig. 3 to enable a 
visual assessment of the algorithm’s statistical efficiency. 

As we can see, the RMSEs of all the considered inter-bin 
frequency location estimators are close as soon as the SNR 
is smaller than 30 dB. Conversely, the RVCI-1 and the 
CRVCI-1 algorithms are more accurate for higher SNR 
values than the others. Indeed, in this latter situation, the 
contribution of the spectral image component dominates the 
effect of noise. Still, the CRVCI-1 and the RVCI-1 are more 
robust to that contribution due to the adoption of three-point 
interpolation. A similar RMSE behavior holds for the 
damping factor estimators returned by the CRVCI-1, the 
two-point IpDFT, and the Aboutanios algorithms. In 

contrast, the RVCI-1 algorithm exhibits poor accuracy, as 
expected from the results reported in Fig. 2(b). 

 
(a) 

 
(b) 

Fig. 3 – Real-valued noisy damped sinusoids: RMSEs of the inter-bin 
frequency location (a) and the damping factor (b) obtained by the classical 
two-point IpDFT [9], the Aboutanios [3], the RVCI-1, and the CRVCI-1 
algorithms versus SNR when n = 3.3 cycles. Ten thousand runs of M = 512 

samples, each with signal phase f changed at random.  

REAL-VALUED NOISY AND HARMONICALLY 
DISTORTED DAMPED SINUSOIDS 

Figure 4 shows the NRMSEs of the inter-bin frequency 
location (Fig. 4(a)) and the damping factor (Fig. 4(b)) 
estimates provided by the considered algorithms as function 
of the number of analyzed signal cycles when a noisy and 
harmonically distorted damped sinusoid are analyzed. The 
signal is affected by 2nd and 3rd damped harmonics with 
amplitudes equal to 10% and 5% of the fundamental 
amplitude and damping factors equal to 0.3 and 0.6, 
respectively. The SNR is 50 dB, and the observation window 
length varies, as in Fig. 2.  

As we can see, the NRMSEs of the inter-bin frequency 
location estimators provided by the RVCI-1 and CRVCI-1 
algorithms are pretty close and better than those of the other 
algorithms almost everywhere when at least three and no 
more than seven cycles are observed. For the remaining 
values n, all algorithms provide nearly the same accuracy. 
The same conclusions hold for the damping factor estimates, 
except the RVCI-1 algorithm, which exhibits poor 
performance mainly because its damping factor estimates 
also depend on the estimated inter-bin frequency location. 

Figures 2, 3, and 4 also show that, in the considered 
simulation conditions, the inter-bin frequency location and 
the damping factor estimates returned by the considered 
algorithms are close to the related asymptotic CRLB if the 
number of analyzed signal cycles is high enough that the effect 
of noise overcomes the contribution of the spectral image 
component. 
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(a) 

 
(b) 

Fig. 4 – Real-valued noisy and harmonically distorted damped sinusoids: 
NRMSEs of the inter-bin frequency location (a) and the damping factor (b) 
obtained by the classical two-point IpDFT [9], the Aboutanios [3], the RVCI-
1, and the CRVCI-1 algorithms versus the number of acquired signal cycles n. 
Signal affected by 2nd and 3rd harmonics of amplitude 10% and 5% of the 
fundamental and damping factors 0.3 and 0.6, respectively. SNR = 50 dB. 
10,000 runs of M = 512 samples, each with signal phase f changed at random. 

4. CONCLUSIONS 
This paper proposes a three-point  IpDFT algorithm – the 

CRVCI-H algorithm. It estimates the frequency and damping 
factor of real-valued damped sinusoids by interpolating 
complex-valued DFT samples, thus assuring more accurate 
damping factor estimates than the RVCI-H algorithm. Also, it 
has been shown that the CRVCI-H algorithm is more robust 
to the contribution of the spectral image component than the 
classical two-point IpDFT algorithm [9] and the Aboutanios 
algorithm [3]. The CRVCI-H algorithm can be 
advantageously employed in real-time frequency and 
damping factor estimation of noisy and harmonically 
distorted damped sinusoids. 

APPENDIX  
EXPRESSION OF THE INTERPOLATION FUNCTION 

USED BY THE CRVCI-H ALGORITHM 
After simple calculations, it follows: 

b(𝑧' + ℎ') =
(𝑧 + j)(𝑧 − j𝐻)
𝑧N𝑧 + j(𝐻 + 1)O

b[(𝑧 + j)' + ℎ'] =
,

+-<

,

+-<

 

(K!9)(K;9,)
K>K!9(,;<)C

∏ [(𝑧 − j)' + ℎ'],
+-< ,               (A.1) 

where z = a - jd.  
By assuming that enough signal cycles are observed so 

that the contribution of the spectral image component to R1c 
and R2c can be neglected, after simple algebra, from (6), (8), and 
(A.1) it results: 

                   𝑅<J ≅
LM-! (I;<)
LM-! (I)

≅ (K!9,)!

>K;9(,;<)C
!,                   (A2a) 

and 
        𝑅'J ≅

LM-! (I!<)
LM-! (I)

≅ (K;9,)!

>K!9(,;<)C
!,                   (A.2b) 

After tedious calculations from (A.2) it follows:  
                 𝑅<J − 𝑅'J ≅ − NO(',;<)KPK!!,(,;<)Q

[K!;(,;<)!]!
,            (A.3) 

and 
2(𝐻 + 1)𝑅+,𝑅-, − 𝑅+, − 𝑅-, − 2𝐻 ≅ -(-/0+)![3!4/(/0+)]

[3!0(/0+)!]!
. (A.3) 

By replacing (A.3) and (A.4) with (11) it follows that: 
h	≅ d	+	jα.                                (A.5) 
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