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The control and energy algorithms that govern the operation of a PEM fuel cell within an energy system must account for the 
nonlinear phenomena in the cell; it is often captured by the polarization curve. However, the modeling approaches used for 
simulation studies could be more suitable for the abovementioned algorithms due to their higher computational burden. That 
leads to the development of simplified approaches. Our study focuses on the algorithms used for the fuel cell output power 
calculation. Many of them are directed towards the maximum power point operation of the cell. We propose that the fuel cell 
representation for the algorithms can be used in the low-order polynomial form, thus decreasing the computational load compared 
to the other approaches. For the maximum power point prediction, we propose using the truncated form of polarization curve 
input data (ignoring the activation loss region). Our study has demonstrated that based on the same input data and MATLAB 
curve fitting commands, the 3rd-order polynomial provides the comparable RMSE 3.5…3.9 for the power curve approximation 
vs. 3.9 for the 5th-order polynomial representation. The value of the maximum PowerPoint is obtained with a 1.3 % relative error 
with the 2nd-order polynomial using the truncated input data compared to 1.2 % for the 5th-order polynomial representation.

1. INTRODUCTION 
A fuel cell (FC) converts the chemical energy of the fuel 

into electrical energy and is dependent on the availability of 
the fuel itself and the oxidant. One of the most promising FC 
technologies is the proton exchange membrane (PEM) FC, 
also called hydrogen FC, with hydrogen as a fuel and oxygen 
as an oxidant. Due to its environmentally friendly nature 
(water as a by-product of power generation), it is considered 
a technology for sustainable development. Therefore, an 
ambitious scenario presented in Hydrogen Europe in 2019 
[6] considers that hydrogen can provide up to 24 % of the 
total energy demands by 2050. 

This technology can provide energy needs in many fields, 
including microgrids, uninterruptible power supplies, and 
portable applications [7]. PEM FC has also found its niche 
in the transportation sector and is rapidly developing in that 
direction [8,9], including cars and trucks, agricultural 
tractors [10] and marine transport [11], etc. 

The FCs cooperate with other energy-generating and 
energy-storage devices in all these applications. Their 
cooperation is governed by different energy management 
systems (EMS) algorithms, which manage the energy flows 
between energy-generating devices, energy-storage devices, 
and energy consumers. 

The energy flow is often based on the solution of some 
optimization problem. Thus, Peng et al. [12] developed the 
offline optimal EMS for an FC-based hybrid drivetrain based 
on Pontryagin’s minimum principle and dynamic 
programming. The solution of Quan et al. [13] is based on 
model predictive control speed prediction of FC electric 
vehicles. The predicted speed influenced the EMS strategy 
with an objective of equivalent hydrogen consumption 
minimization considering the FC degradation. Unlike the 
previous ones, the latter approach solves the online 
optimization problem. An example of the bridge between 
both approaches is a hybrid strategy, like the one reported in 
[14], which solves the problem of optimal energy 
consumption and instantaneous power distribution with 

online adaptability. Zidane and Belaid [15] developed an 
EMS algorithm for a hybrid photovoltaic/battery/hydrogen 
system based on fuzzy logic, optimizing the overall system 
price and reliability. Advanced EMS strategies can also 
include co-optimizing energy consumption and vehicle 
speed planning [16]. 

The development of those EMS algorithms is complicated 
due to the FC's nonlinear nature, namely, its polarization 
curve [17], as explained below. For the simulation studies, a 
detailed representation of the FC's physical behavior is often 
used [18–20]. Kravos et al. [21] propose a 
thermodynamically consistent PEM FC model for control 
and state monitoring algorithms. Despite its applicability for 
various operating conditions, the other approaches prefer 
simpler models. 

Thus, the maximum power point tracking algorithm in 
[22] uses the non-physics-based representation of an FC 
polarization curve by the ninth-order polynomial. The fifth-
order polynomial was used by Pukrushpan [2] for control 
purposes. The dc-dc converter control algorithm used for 
fuel cell applications in [4] and a nonlinear voltage 
regulation strategy in [1] uses a much simpler representation 
of a polarization curve, thus requiring less computational 
load to implement the control algorithm. 

There always needs to be a compromise between the 
computational complexity and the algorithm's accuracy. 
Maximum-power and maximum-efficiency points of an FC 
correspond to the non-linearity regions of the polarization 
curve. Therefore, they should be used as a nonlinear 
representation, as we are interested in the operation near one 
of those points. In subsection 2.2, we review several models 
to define the state-of-the-art on the subject. The natural 
question is, to what extent can we simplify the mathematical 
representation of the polarization curve to preserve the 
accuracy of the representation of the FC operation? 

In the current study, we limit ourselves to predicting FC 
output power, with a special interest in the maximum output 
power point. We study the possibility of using low-order 
polynomials for an output power calculation based on the set 
of points (in practice, those can be obtained experimentally 
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on the real FC). The representation can be used for EMS or 
control design purposes. 

 

 
Fig. 2 – Digitalized characteristic curves of PEM FC stack SR-12 [29]. 

2. PEM FC POLARIZATION CURVE MODEL 

2.1. PEM FC MODEL 
When the FC is disconnected from the external electric 

circuit, its potential is obtained using the Nernst equation as 
𝐸!"#$%&, the Nernst voltage. It corresponds to the maximum 
energy generated in a fuel cell at the given conditions. 

However, when the FC operates within a system, and the 
circuit is closed, the output voltage of the cell is governed by 
the equation 

𝑣'( = 𝐸!"#$%& − 𝑣)(& − 𝑣(*$( − 𝑣+,             (1) 

where different voltage losses should be considered, namely, 
the activation voltage loss 𝑣)(&, the difference from the 
equilibrium voltage required to initiate the reaction, the 
concentration voltage loss 𝑣(*$( corresponding to the mass 
transfer phenomenon, and the ohmic voltage loss 𝑣+. The 
dependence 𝑣'((𝑖'() is called the polarization curve. 

The ohmic voltage loss depends on the resistance of the 
electrolyte and other conducting fuel cell components; it is 
linearly dependent on the current due to Ohm’s law. 
However, two other components of (1) are strongly non-
linear [17]. Thus, nonlinearity corresponding to the 
activation voltage loss mainly influences the low-current 
region, while the concentration voltage loss influences the 
high-current region, as demonstrated in Fig. 1. 

 
Fig. 1 – Typical polarization curve (the dependence 𝑣!"(𝑖!")) of a PEM FC 

with regions of prevailing voltage losses 

2.2. EMPIRICAL AND SEMI-EMPIRICAL MODELS OF 
A PEM FC POLARIZATION CURVE 

Due to the non-linear nature of the polarization curve, 
several studies were directed toward obtaining some 
empirical and semi-empirical models of the polarization 
curve. Thus, it seems that chronologically, the first was the 
model [3] 

𝑣'((𝑖'() = 𝐸, − 𝑏 ln 𝑖'( − 𝑅𝑖'( −𝑚exp(𝑛𝑖'(),       ) 

with 𝐸,, the coefficient without the theoretical meaning (it is 
different from 𝐸-the reversible voltage at the standard state, 
as the authors of [23] stress); 𝑏 ln 𝑖'( representing the 
activation loss with 𝑏 standing for the parameter for oxygen 
reduction from the Tafel equation; 𝑅 representing the 
resistance; 𝑚exp(𝑛𝑖'() representing the concentration loss 
with 𝑚 and 𝑛 used to fit the experimental curve, respectively. 

A few years later, its slightly modified version [5] was 
formulated as: 

 𝑣'((𝑖'() = 𝐸, − 𝑏 ln 𝑖'( − 𝑅𝑖'( + α𝑖'(. exp(1 − β𝑖'(), (3) 

where the concentration loss component of (1) is fitted by 
parameters without physical meaning, and β representing the 
inverse of the limiting current density. 

Below, we ignore the parameters' particular physical 
meaning, interpreting them only as the curve-fitting 
parameters independent of their physical meaning for 
simplification. 

As the reviews of different polarization curve models 
conclude (e.g., [24]), the most precise model is the one 
proposed in [25]; however, it is also the most complicated one. 

In [2], the fifth-order polynomial representation is 
proposed 

𝑣'((𝑖'() = 𝑐- + 𝑐/𝑖'( + 𝑐0𝑖'(0 + 𝑐1𝑖'(1 + 𝑐2𝑖'(2 + 𝑐3𝑖'(3 ,   (4) 

where coefficients 𝑐-…𝑐3 have no physical meaning. 
The models (2)-(4) are suitable for representing the PEM 

FC in a full range of currents. However, several proposed 
models ignore the concentration loss region. These models 
can be formulated as follows [4]: 

𝑣'((𝑖'() =
4!

/56
"#$
%&
7
',                               (5) 

or as follows [1] 
𝑣'((𝑖'() = 𝑉, − 𝑎𝑖'(8 ,                            (6) 

where 𝑉, is the FC open circuit voltage of the fuel cell stack, 
δ, and 𝐼9 in (5) has no physical meaning, as do a and b in (6). 

Again, we neglect the physical meaning of the parameters 
as they are used in the models, treating them as curve-fitting 
parameters.  

It should be noted that the simplified models are applied 
for control purposes. Thus, model (5) is used in [4] for 
energy trajectory planning in a dc–dc converter system and 
in [24] for the development of adaptive backstepping control 
for a fuel cell/boost converter system. Model (6) is used in 
[1] to set the setting of the nonlinear state feedback for a fuel 
cell/supercapacitor system. 

If models (5) and (6) ignore the concentration loss region, 
they are unsuitable for FC operation near the maximum 
power operating point. 

Several works used more complicated models; thus, 
model (3) was implemented for an adaptive EMS for fuel cell 
vehicles to estimate the polarization curve online [27]. 
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One of the trends in FC research is optimal parameter 
identification of FC parameters using multiple optimization 
algorithms based on the measured data to fit the model [28–
30]. However, most of these algorithms are suitable for 
offline techniques. 

2.3. REMARK ON MAXIMUM POWER AND 
MAXIMUM EFFICIENCY CALCULATION IN PEM FC 

CONTROL ALGORITHMS 
In our work, we focus on the mathematical model of the 

PEM FC for the FC power calculation. It should be noted that 
FC control is performed using the maximum power point 
tracking (MPPT) and maximum efficiency point tracking 
(MEPT) algorithms, which assure operation with maximum 
output power and maximum output efficiency, respectively.  

However, several control algorithms related to output 
power maximization in FC applications explicitly deal with 
the power of the fuel and the oxidant flow in FC. Thus, the 
MPPT algorithm developed in [31] optimizes the reactant 
flow. In [32], several control problems related to FC are 
reviewed, such as fuel and oxidant flow problems and water 
and thermal management. 

On the other hand, due to the lower dynamic response of 
the FC system, the fuel and oxidant flows are uncontrolled, 
and the developed control techniques deal with the control 
from the electric side only. Several recent examples are the 
MPPT technique based on a hybrid artificial bee colony 
algorithm with fuzzy control [33] or fuzzy MPPT [34]. More 
advanced techniques use the characteristic curve 
approximation with the coefficients dependent on the power 
of the fuel or oxidant flow [35]. 

3. INPUT DATA 

3.1. REMARK REGARDING THE INPUT DATA AND 
DATA PROCESSING 

As we deal with the development of algorithms for 
control-oriented studies, we should consider the effect of 
errors and the limitations dictated by the application (for 
which the technique is developed).  

Thus, we assume a real-world system with hybrid energy 
storage based on PEM FC operating under a control 
algorithm requiring power data (e.g., the MPPT algorithm or 
an intelligent energy management algorithm). For such an 
application, the parameters of the FC stack are obtained from 
the experimental data and then utilized to adjust the control 
algorithm. We admit that measurement and data processing 
cause inevitable errors. 

Therefore, we assume the only data source for all fitting 
curve representations. Afterward, we compare the input data 
and the results obtained by curve fitting. We assume that the 

low-order polynomials can provide a satisfactory 
representation of the power curve with a special interest in 
the maximum power point. 

The operating conditions influence the FC operation and 
the FC characteristic curve (temperature, pressures of 
oxidant, and fuel, among others). Therefore, the FC 
characteristic curve obtained in the laboratory environment 
will differ from the one in the application. We aim to confirm 
that the low-order polynomials provide a satisfactory output 
for the same input data for the control algorithm. That can be 
obtained by comparing the RMSE for the different fitting 
curves. 

3.2. SOURCE OF THE INPUT DATA 
The input data, FC polarization (𝑣–𝑖) and 𝑝–𝑖 curves were 

obtained by digitalizing the characteristic curves of FC stack 
of the type of SR-12 from [29] utilizing Graph2Digit 
software (Fig. 2). In [29], the experimental data were initially 
obtained, and later, the improved gorilla troops optimization 
technique has been applied to evaluate the coefficients 
corresponding to the simplified electrochemical PEM FC 
model in the form as in [25]. Please also note that simplified 
corresponding to the model [25] means simplified 
electrochemistry; its complexity level is as high as with the 
accurate parameter estimation. It will be assumed below as 
the accurate fuel cell model and depicted in Fig. 3–5 as the 
best-fit curves. 

4. RESULTS AND DISCUSSION 
The digitalized data have been sent to the MATLAB 

environment for further data processing using the functions 
of its Curve Fitting Toolbox. 

The fitting function was a polynomial of a different order. 
Thus, the first test case used a 5th-order polynomial as in [2]. 
The results are depicted in Fig. 3. The power curve is 
obtained as 𝑝'( = 𝑣'(𝑖'( using the polarization curve data. 

Two other cases used 3rd (Fig. 4a) and 2nd (Fig. 5a) order 
polynomials. As far as our study is limited to the search of 
curve fitting for power calculation purposes, the common 
feature of the FC is that its maximum power point is mainly 
influenced by the ohmic losses and mass transport losses. As 
far as some algorithms are designed upon the assumption of 
the polarization curve limited to activation and ohmic loss 
regions, and the utilized functions (like those (5) and (6)) 
ignore the concentration loss region, the next assumption is 
that activation polarization region can be ignored, and the 
polynomial function can be obtained by ignoring the input 
data corresponding to the activation loss region. The results 
are depicted in Fig. 4b and Fig. 5b for 3rd and 2nd-order 
polynomials correspondingly. 

                        
Fig. 3 – Polarization curve fitting of PEM FC stack SR-12 using 5th order polynomial and the corresponding power curve 
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(a) 

                          
(b) 

Fig. 4 – Polarization curve fitting of PEM FC stack SR-12 using 3rd order polynomial and the corresponding power curve: (a) input data are taken from 
the full 𝑖!" range; (b) input data are taken from the truncated 𝑖!" range 

 
The goodness of fit for all test cases is evaluated using 

RMS values based on the 𝑣–𝑖 and 𝑝–𝑖 curves. The results are 
summarized in Table 1. 

Table 1 
RMSE comparison of polarization curve approximations 

Polynomial RMSE, 𝑣–𝑖 curve RMSE, 𝑝–𝑖 curve 
5th order 0.1657 3.8217 

3rd order, using the full data 
set 

0.2358 3.9544 

3rd order, using the truncated 
dataset 

0.3717* 
0.1409** 

3.5339* 
3.6512** 

2nd order, using the full data 
set 

0.7141 13.7063 

2nd order, using the 
truncated dataset 

1.6324* 
0.2811** 

7.4873* 
7.1532** 

* RMSE calculated comparing the whole range of polarization curve 
** RMSE calculated comparing the truncated dataset 

 
When comparing the RMSE values corresponding to the 

𝑣–𝑖 curve in Table 1, it is obvious that higher-order 
polynomials result in better goodness of fit. When the 
truncated input dataset is used, the lower-order polynomials 
predictably better fit the curve in the whole range but provide 
a better representation if the selected range is analyzed. 

Another result is that when the RMSE values for the curve 
fitting using the truncated data are compared, the values 
decrease when the whole data range is analyzed. That is due to 
the addition of the low-current region, where the power is small. 

Table 2 
Comparison of the values of current for the maximum FC output power. 

Polynomial 𝑖!" for 𝑝!"#$%, A 𝛿&, % 
Input data 32.645 — 
5th order 32.247 –1.22 

3rd order, using the full data 
set 

31.551 –3.352 

3rd order, using the truncated 
dataset 

31.665 –3.004 

2nd order, using the full data 
set 

35.18 7.764 

2nd order, using the 
truncated dataset 

32.214 –1.322 

The comparison of the current values for the maximum FC 

output power (Table 2) demonstrated that while the 5th-
order polynomial representation provides the best current 
value with –1.22 % relative error, the 3rd-order polynomial 
representation provides the results at 3 – 4 %. The 2nd order 
polynomial representation with the full input data provides 
the worst result, 7.764 %. In contrast, the truncated input data 
(ignoring the activation loss region) provides the current 
value with a –1.322 % relative error, close to the one 
obtained using the 5th-order polynomial. 

Nevertheless, suppose the curve fitting is used in the 
algorithms requiring the FC operation near the maximum 
power point. In that case, it is well represented even by low-
order approximations. 

5. CONCLUSIONS 
A simplified representation of the PEM fuel cell 

polarization curve (unlike more complex models used for 
simulation studies) is useful for developing control and 
energy management algorithms. One possible simplification 
is that the polarization curve can be used to predict fuel cell 
output power and assess the maximum output power point, 
as is the case for numerous algorithms reported in the 
literature. 

Our study compares the 5th-order polynomial 
representation in [2] and the low-order, 3rd, and 2nd-order 
polynomials as possible substitutes in the algorithms. The 
input data for the fitting polynomials was selected similarly, 
and the curve fitting functions were the standard ones from 
the MATLAB environment. The other idea of the paper was 
that for the maximum power point prediction, the input data 
can be taken, ignoring the activation loss region. 

As a result, the 3rd-order polynomial representation of the 
power curve is obtained using the comparable values of 
RMSE as compared to the 5th-order polynomial (3.5…3.9 vs 
3.8), with the better results obtained using the truncated input 
dataset. When comparing the prediction of the maximum 
output power of the fuel cell, the 2nd-order polynomial 
representation with the truncated dataset provided a 1.3 % 
relative error as compared to the 1.22 % with the 5th-order 
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polynomial and 3…3.5 % with the 3rd-order polynomial 
representation. 

The other input dataset for the other fuel cell stack would 
result in the other numerical values. However, reducing the 
order of the polynomial representation of the fuel cell 
polarization curve for the algorithms requiring the cell’s 
output power will reduce the computational burden of the 
algorithm, resulting in comparable accuracy. 

Further study will be directed towards implementing the 
proposed solution in a hybrid energy storage system based 
on FC to demonstrate its feasibility and determine its 
possible advantages and drawbacks. 

The other direction for future research is to study a similar 
solution of using low-order polynomials for maximum 
efficiency calculation algorithms. 

Also, future studies will consider the change of the fitted 
curve parameters depending on the FC system's operating 
conditions, like the one performed in [35]. In that case, a 
family of characteristic curves can be fitted using low-order 
polynomials. 

Received on 7 February 2024 
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NOMENCLATURE 

Abbreviations 
EMS energy management system 
FC fuel cell 
MEPT maximum efficiency point tracking 
MPPT maximum power point tracking  
PEM proton exchange membrane 
RMSE root mean square error 
Variables 
𝑎 curve fitting coefficient from [1] 
𝑏 curve fitting coefficient from [1] 
𝑏 parameter for oxygen reduction from the Tafel equation 
𝑐'…𝑐( curve fitting coefficients from [2] with no physical meaning 
𝐸)*+,-. Nernst voltage 
𝐸/ parameter from [3] with no physical meaning 
𝐸' reversible voltage at the standard state 
𝑖!" fuel cell output current 
𝐼0 parameter from [4] with no physical meaning 
𝑘 parameter from [5] with no physical meaning 
𝑚 parameter from [3] with no physical meaning 
𝑛 parameter from [3] with no physical meaning 
𝑝!" fuel cell output power 
𝑝!"#$% maximum fuel cell output power 
𝑅 fuel cell resistance 
𝑣$". activation voltage loss 
𝑣"1," concentration voltage loss 
𝑣!" fuel cell output voltage 
𝑣2 ohmic voltage loss 
𝑉/ fuel cell open circuit voltage 
α parameter from [5] with no physical meaning 
β inverse of the limiting current density 
δ parameter from [4] with no physical meaning 
δ3 relative error of current 

 


