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In natural language understanding, transformer models like T5 and GPT have achieved strong results in generating contextually 
relevant responses. However, limitations such as static self-attention in T5 and unidirectional context in GPT hinder their ability 
to capture deeper inter-token dependencies and nuanced semantics. To address these challenges, we propose an enhanced T5 
(ET5) architecture integrating two novel modules: contextual dual-axis rotational attention (CDARA) and neural-spline gated 
linear units (NS-GLU). CDARA facilitates attention across both token and feature dimensions, while NS-GLU introduces adaptive 
spline-activated gating for improved nonlinear representation. Experiments on NarrativeQA, SQuAD, MultiWOZ, and 
DailyDialog show that ET5 consistently outperforms PEGASUS, GPT-3, and T5-LSTM FusionNet. ET5 achieves superior 
BERTScore (up to 0.971), BLEU (up to 0.77), and lower word error rate (WER) (as low as 0.13), confirming its effectiveness in 
generating fluent, accurate, and semantically rich responses. These results position ET5 as a promising advancement in 
transformer-based conversational AI systems. 

1. INTRODUCTION 
Transformer-based architecture has become the backbone 

of modern conversational agents, with models such as 
generative pre-trained transformer (GPT-3) and text-to-text 
transfer transformer (T5) demonstrating remarkable 
capabilities in generating fluent, contextually relevant, and 
diverse responses. Despite their success, both models exhibit 
fundamental limitations that restrict their performance in 
complex dialogue generation and question-answering tasks. 

T5, while offering a flexible text-to-text framework with an 
encoder-decoder structure, is hindered by two critical issues. 
First, its standard self-attention mechanism operates primarily 
in a unidirectional manner within each encoder and decoder 
layer, limiting its ability to capture multi-scale contextual 
dependencies and feature interactions simultaneously. 
Second, the position-wise feed-forward network (FFN) used 
after attention layers processes each token independently with 
fixed activation dynamics, failing to adaptively modulate 
information based on global sequence structure or token-
specific relevance. This leads to suboptimal handling of 
nuanced semantics, especially in multi-turn conversations or 
when contextual reasoning is required. 

On the other hand, GPT-3, with its autoregressive decoder-
only design, generates tokens based on a left-to-right context 
window. While powerful in fluent text generation, GPT-3 
cannot perform bidirectional context encoding, which is crucial 
for tasks that require understanding both preceding and 
succeeding content, such as question answering or follow-up 
reasoning in dialogue. Additionally, GPT-3 suffers from over-
reliance on surface-level patterns and often produces generic, 
verbose, or factually inconsistent responses, especially when 
encountering ambiguous prompts or low-resource domains. Its 
sheer size, although advantageous for generalization, introduces 
inefficiencies in fine-tuning and adaptation, making it 
impractical for personalized or domain-specific applications. 

These observed limitations motivate the need for 
architectural enhancements that can: (i) capture deep contextual 
relationships across both time and feature dimensions, (ii) offer 
adaptive non-linear transformations beyond rigid FFN 
behavior, and (iii) maintain a bidirectional and generative 
framework suited for open-domain response tasks. 

To address these challenges, we propose an Enhanced T5 

model (ET5) that integrates two novel components: (i) 
Contextual Dual-Axis Rotational Attention (CDARA), a 
dual-dimensional attention mechanism that captures rich 
semantic dependencies across token positions and 
embedding features; and (ii) Neural-Spline Gated Linear 
Units (NS-GLU), which replace the feed-forward network 
with a spline-based adaptive gating module, enabling 
context-sensitive non-linear feature modulation. These 
enhancements are designed to address the inherent 
inflexibility of standard transformer architectures and 
enhance the system’s capability to produce responses that 
are more fluent, contextually relevant, and accurate. 

Empirical evaluations on multiple question-answering 
and dialogue datasets (NarrativeQA, SQuAD, MultiWOZ, 
and DailyDialog) demonstrate that ET5 consistently 
outperforms baseline architectures in bidirectional encoder 
representations from transformers score (BERTScore), 
bilingual evaluation understudy (BLEU), and word error rate 
(WER) metrics. The findings suggest that enriching attention 
and feed-forward components within transformer 
frameworks offers a promising direction for advancing the 
state of conversational AI. 

2. RELATED WORKS 
Recent advances in artificial intelligence (AI) have led to 

significant improvements in question answering (QA) 
chatbots, driven by innovations in datasets, text 
representation, and model architectures [1–6]. Early systems 
primarily relied on handcrafted features and statistical 
models, but the emergence of large-scale datasets such as 
NarrativeQA and SQuAD [7–10], as well as dialogue-
specific corpora like the Cornell Movie Dialogues [11,12], 
has facilitated data-driven training approaches for open-
domain conversation systems. 

Word representation has evolved from traditional 
frequency-based techniques to dense vector embeddings 
[13,14]. For instance, term frequency–inverse document 
frequency (TF-IDF) has been used in early retrieval-based 
models [15–18]. At the same time, more recent efforts 
incorporate distributed word representations such as GloVe 
or domain-adaptive sparse embeddings, offering improved 
semantic understanding for neural architectures. 

In terms of modeling, a broad spectrum of machine learning 
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(ML) and deep learning (DL) strategies has been explored. 
Classical ML models [19,20], alongside deep learning 
architectures, have enabled more fluent and context-aware 
chatbot responses. The sequence-to-sequence (Seq2Seq) model 
has become foundational for response generation and has been 
extended through attention mechanisms to improve output 
fluency and contextual relevance. 

Recently, transformer architectures have revolutionized 
chatbot development, primarily due to their scalability and 
exceptional capability in capturing long-distance contextual 
relationships [21]. Prior research has validated the efficiency 
of models like BERT, GPT, and T5 in enabling 
comprehensive end-to-end chatbot training. 

2.1 LITERATURE EMPLOYING THE TRANSFORMER 
MODEL FOR RESPONSE GENERATION 

A transformer-based model, ALSI-transformer, was 
proposed to improve automatic code comment generation by 
leveraging both lexical and syntactic features through a 
novel code-aligned type (CAT) sequence [15]. This 
alignment enhances semantic representation by combining 
code tokens with syntax structures. The model outperforms 
existing baselines on Java datasets and reduces training time. 
However, it lacks support for project-level comment 
generation and cross-function context understanding. Its 
reliance on language-specific parsers also limits 
generalizability to other programming languages, suggesting 
a need for future enhancements across diverse codebases. 

To enhance abstractive summarization, PEGASUS 
employs a unique pre-training strategy known as gap-
sentence generation, in which essential sentences are masked 
and inferred using the remaining text [16]. This method 
enables the model to capture representations relevant to 

summarization, delivering top-tier results across 12 
benchmark datasets. It is also effective in environments with 
limited data. However, PEGASUS relies heavily on 
heuristic-based sentence selection, which may not generalize 
well across all domains. Additionally, its computational 
requirements during pre-training are high, posing scalability 
concerns for broader real-world applications. 

To enhance summarization in the psychological domain, 
a hybrid model combining T5 and LSTM, known as T5 
LSTM FusionNet, was introduced for improved contextual 
and sequential representation [17]. The model demonstrated 
improved accuracy, precision, and ROUGE scores compared 
to standalone and transformer-based models. It effectively 
captured unigram and bigram overlaps, contributing to more 
coherent summaries. However, the fusion mechanism 
remains suboptimal, particularly in preserving long-range 
dependencies and sequence flow. Moreover, the model’s 
adaptability across multilingual datasets and clinical 
decision-making contexts remains to be validated, indicating 
potential areas for further improvement. 

A novel text-based steganography method was introduced 
using GPT-3 to generate natural language stego text for covert 
communication over software-defined radios (SDRs) [18]. The 
approach encodes secret bits into abbreviations and uses GPT-
3 to generate plausible text expansions, achieving low 
perplexity (2.75), high human opinion scores (4.052), and high 
decoding accuracy. It also demonstrated resistance to detection, 
with low recognition accuracy (0.5245). Despite its 
effectiveness, the method relies on a fixed language model and 
pre-agreed encoding schemes. Future improvements could 
explore customized language models and adaptive text 
frameworks for enhanced security and versatility. 

  

 
Fig. 1. – Architecture of ET5 Model. 

3. PROPOSED METHODOLOGY 
This section describes the architectural design and internal 

components of the proposed Enhanced T5 (ET5) model. It 
outlines the input processing workflow, encoder-decoder 
mechanisms, and the integration of two novel modules: 
CDARA and NS-GLU to improve semantic representation 

and response generation. 

3.1 FUNCTIONAL LAYOUT OF THE ET5 
ARCHITECTURE 

The Enhanced T5 (ET5) model advances the original T5 
framework by addressing its limitations in semantic 
understanding and adaptive feature learning. ET5 introduces 
two core innovations: CDARA and NS-GLU, which are 



3 Muthukumaran Narayanaperumal et al.  
 

embedded within both the encoder and decoder stacks. The 
model begins with preprocessing and tokenization, followed 
by input embedding and positional encoding. CDARA 
captures rich contextual relationships by applying dual-
stream attention over both token (temporal) and feature 
(channel) dimensions, enhanced through rotational 
transformations. This facilitates a deeper understanding of 
semantic and syntactic dependencies. NS-GLU replaces the 
standard feed-forward network with a spline-activated gated 
mechanism, enabling smooth, learnable non-linear 
modulation of features. In the decoder, masked multi-head 
attention supports autoregressive generation by processing 
shifted output tokens, after which CDARA and NS-GLU 
refine context and feature integration again. Final outputs are 
projected to the vocabulary space via a linear layer and a 
softmax function. Through this architecture, ET5 improves 
upon T5 and GPT variants, achieving higher performance 
across metrics such as BLEU, BERTScore, and WER on 
benchmarks including NarrativeQA, SQuAD, MultiWOZ, 
and DailyDialog, demonstrating superior generalization, 
semantic fidelity, and response quality in natural language 
tasks. Figure 1 represents the architecture of ET5 model. 

3.2 COMPONENTS OF THE ET5 MODEL 
3.2.1 INPUT REPRESENTATION AND POSITIONAL 

ENCODING 
The input representation and positional encoding stage 

initiates the ET5 model by converting raw text into 
structured semantic embeddings. The input text is first 
preprocessed through tokenization, normalization, and 
formatting to ensure compatibility with the transformer. 
These tokens are then embedded into dense vectors via an 
input embedding layer that captures essential lexical 
semantics. To preserve sequence order, fixed sinusoidal 
positional encodings are added, providing parameter-free 
positional awareness without additional training overhead. 
This enables the model to recognize relative token positions 
effectively. During decoding, output tokens are right-shifted 
and embedded in a similar manner, with fixed positional 
encodings applied to maintain sequence alignment for 
autoregressive generation. This phase ensures that both 
encoder and decoder components receive inputs that are 
contextually enriched and position-aware, laying a strong 
foundation for accurate and coherent text generation in 
downstream tasks. 

3.2.2 ENCODER DESIGN 
The encoder in the Enhanced T5 (ET5) model is designed 

to capture deep contextual dependencies from the input 
sequence using a stack of modified transformer layers. Each 
encoder block replaces traditional self-attention with 
CDARA to model both token-level and feature-level 
interactions. This is followed by NS-GLU, which substitute 
standard feed-forward layers to introduce flexible, non-
linear feature transformations. Residual connections and 
layer normalization are applied throughout to stabilize 
learning and preserve gradient flow. 

3.2.3 DECODER DESIGN 
The decoder in the Enhanced T5 (ET5) model is designed 

to generate responses in an auto-regressive manner by 
integrating masked multi-head attention, CDARA, and NS-
GLU. Initially, masked attention enables the decoder to 
attend only to previous tokens, preserving the causality 

required for sequential decoding. This is followed by 
encoder-decoder attention using CDARA, which enhances 
positional alignment and context flow by capturing cross-
dimensional interactions between encoder outputs and 
decoder states. Finally, NS-GLU fuses the attended features 
with learnable, spline-based gating, enabling adaptive 
control over the information flow and enhancing the 
decoder’s expressive power. Together, these components 
ensure the generation of accurate, fluent, and context-aware 
responses. 

3.2.4 CDARA 
CDARA is an innovative attention framework designed to 

enhance the model’s ability to recognize both temporal and 
feature-level dependencies within the input data. Unlike 
traditional self-attention, which focuses solely on token-wise 
relationships, CDARA introduces a dual-axis approach by 
performing attention across both the temporal (token) and 
feature (channel) dimensions. A rotational transformation is 
interleaved between these axes to facilitate richer cross-
dimensional interactions. This is followed by a gated fusion 
mechanism that adaptively combines the outputs from both 
attention paths, enabling dynamic weighting of contextual 
signals. The result is a semantically enriched representation 
that balances inter-token coherence with intra-feature 
expressiveness. Figure 2 represents the architecture of the 
CDARA module. 

 
Fig. 2. – CDARA Architecture. 

3.2.4.1 INPUT SEQUENCE 
Let the input sequence be: 

 𝑋 ∈ 𝑅!∗#.  (1) 

Equation (1) represents the input matrix with 𝑇 tokens and 
𝐷 hidden dimensions. This input is passed to the Temporal 
Attention block 

3.2.4.2 TEMPORAL ATTENTION (TOKEN-WISE 
ATTENTION) 

Query, Key, Value projections: 

 𝑄 = 𝑋𝑊$ , 𝐾 = 𝑋𝑊% , 𝑉 = 𝑋𝑊&.  (2) 



394 Enhancing conversational agents using rotational attention 4 
 

Equation (2) defines the linear transformations used to 
obtain query, key, and value matrices for temporal attention. 
Scaled Dot-Product Attention: 
 𝐴𝑡𝑡𝑛'()*+,-.(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	 8$/

!

01"
9 𝑣.  (3) 

Equation (3) computes the attention-weighted values 
across the token dimension. 

Output of temporal attention: 

 𝐻2 = 𝐴𝑡𝑡𝑛'()*+,-.(𝑋 ∈ 𝑅!∗#).  (4) 

Equation (4) represents the context-aware output after 
applying token-wise attention. 
3.2.4.3 ROTATIONAL ENCODING (FEATURE MIKING 

LAYER) 
Rotational transformation: 

 𝐻3 = 𝐻2. 𝑅,			𝑅 ∈ 𝑅#∗#.  (5) 

Equation (5) applies a learnable rotation matrix R to 
encourage feature-level mixing within the embedding space. 

3.2.4.4 FEATURE-WISE ATTENTION (CHANNEL-
WISE ATTENTION) 

Transpose and project: 

 𝑄4 = 𝐻3𝑤4
$ , 𝑘4 = 𝐻3!𝑤4/ , 𝑣4 = 𝐻3!𝑤45.  (6) 

Equation (6) projects the transposed feature into queries, 
keys, and values for channel-wise attention. 

Feature-wise attention: 

 𝐴𝑡𝑡𝑛4(-'6,(?𝑄4 , 𝐾4 , 𝑉4@ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 8
$#/#

!

01"
9 𝑉4.  (7) 

Equation (7) computes scaled dot-product attention over 
the feature axis (per token). 

Output after feature attention: 

 𝐻7 = (𝐴𝑡𝑡𝑛4(-'6,((𝐻3!))! ∈ 𝑅!∗#.  (8) 

Equation (8) denotes the feature-enhanced presentation 
transposed back to match the original shape. 

3.2.4.5 GATED FUSION LAYER (CONTEXT FUSION) 

Learnable gate: 

 𝐺 = ?𝐻2𝑤8 +𝐻7𝑤92@ ∈ 𝑅!∗#.  (9) 

Equation (9) defines the gating vector using a sigmoid 
function over a linear combination of temporal and feature 
paths. 

Final fused output: 

 𝐻4:;-. = 	𝐺 ⊙𝐻2 + (1 − 𝐺)⊙𝐻7.  (10) 

Equation (10) performs element-wise fusion, balancing 
both attention sources dynamically. 

3.2.4.6 OUTPUT OF CDARA 

 𝐻<#=>= = 𝐻4:;-. ∈ 𝑅!∗#. (11) 

Equation (11) provides the final output of the CDARA 
block, ready to be passed to the next module. 

3.2.5 NS-GLU 
NS-GLU is a novel replacement for the conventional feed-

forward network in transformer architectures. It introduces a 
dual-path computation mechanism: a primary linear 
transformation path and a gating path modulated by a learnable 

spline activation function. Unlike traditional activation 
functions, the spline activation enables smooth, flexible, and 
shape-controllable non-linearities. The gated output adaptively 
scales the primary features, enhancing expressiveness and 
dynamic range. This structure allows for the model to learn 
complex transformations more efficiently, thereby improving 
its representational power with minimal parameter overhead. 
Figure 3 represents the architecture of the NS-GLU module. 

 
Fig. 3 – NS-GLU Architecture. 

3.2.6 OUTPUT GENERATION LAYER 
The decoder output is linearly transformed into logits, 

passed through a softmax function to compute token 
probabilities, and the highest-probability token is selected 
for autoregressive generation. 

4. RESULT AND DISCUSSION 

4.1. EXPERIMENTAL CONFIGURATION 
The proposed model was developed using Python 3.10 

and TensorFlow 2.11.0 within the Spyder IDE environment. 
Training and evaluation were conducted using benchmark 
datasets: NarrativeQA, SQuAD, MultiWOZ, and 
DailyDialog. Before training, datasets underwent standard 
preprocessing, including tokenization, lowercasing, and 
padding to ensure uniformity across input sequences. The 
ET5 model was trained for 100 epochs with a batch size of 
64 and a learning rate of 0.001. The model's hidden 
dimensionality was set to 1024, and each CDARA module 
employed 8 attention heads to capture temporal and feature-
wise dependencies. A dropout rate of 0.3 mitigated 
overfitting, while the epsilon value for layer normalization 
was fixed at 1e-6 for numerical stability. The Adam 
optimizer was used to accelerate convergence due to its 
adaptive learning rate and momentum-based updates. A 10% 
validation split was applied, with early stopping enabled to 
avoid overfitting. Model training and testing were performed 
on a medium-scale system featuring an NVIDIA GTX 1660 
Ti GPU (6 GB VRAM), 32 GB RAM, and an Intel Core i7-
10700 processor. Training durations ranged between 70 and 
90 hours, depending on the dataset. Hyperparameters were 
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tuned empirically using grid search to ensure optimal model 
performance.  

4.2. RESULT ANALYSIS 
The ET5 framework integrates advanced components—

Contextual Dual-Axis Rotational Attention (CDARA) and a 
Bidirectional Neural-Spline Gated Linear Unit (NS-GLU)—
to enhance contextual understanding in dialogue generation. 
Training and evaluation were conducted on four benchmark 
datasets: NarrativeQA, SQuAD, MultiWOZ, and 
DailyDialog. The best-performing results from each dataset 
variant were compared against several state-of-the-art 
models, including ALSI-Transformer, PEGASUS, T5-

LSTM FusionNet, and GPT-3, to assess the effectiveness of 
the proposed architecture. 

Table 1 presents performance comparisons using 
BERTScore, BLEU, and Word Error Rate (WER). ET5 
consistently surpasses all baselines in BERTScore and 
BLEU, demonstrating its ability to generate semantically 
rich and fluent responses. It also achieves the lowest WER, 
indicating superior accuracy in sequence generation. These 
findings validate the impact of ET5’s architectural 
enhancements—CDARA and NS-GLU—in improving 
contextual representation and overall response quality in 
transformer-based conversational systems.

Table 1 
Evaluation results of the ET5 model vs. state-of-the-art models. 

Metrics Model NarrativeQA SQuAD MultiWOZ DailyDialog 

 
BERTScore 

ALSI-Transformer 0.921 0.927 0.902 0.896 
PEGASUS 0.928 0.934 0.911 0.903 
T5-LSTM FusionNet 0.932 0.938 0.916 0.908 
GPT-3 0.949 0.953 0.932 0.923 
ET5 (proposed) 0.968 0.971 0.953 0.946 

 
BLEU 

ALSI-Transformer 0.692 0.721 0.701 0.678 
PEGASUS 0.705 0.739 0.717 0.689 
T5-LSTM FusionNet 0.711 0.746 0.723 0.694 
GPT-3 0.738 0.763 0.742 0.713 
ET5 (proposed) 0.753 0.778 0.765 0.739 

 
WER 

ALSI-Transformer 0.214 0.196 0.231 0.245 
PEGASUS 0.198 0.182 0.219 0.233 
T5-LSTM FusionNet 0.191 0.175 0.213 0.226 
GPT-3 0.171 0.157 0.194 0.209 
ET5 (proposed) 0.154 0.132 0.172 0.184 

 

4.2.1. BERTSCORE 

 
Fig. 4 – BERTScore. 

Figure 4 shows 3D BERTScore comparisons, where ET5 
outperforms ALSI-Transformer, PEGASUS, and GPT-3, 
achieving 0.95 on NarrativeQA and 0.94 on DailyDialog, 
demonstrating improved semantics via CDARA and NS-
GLU modules.  

Figure 5 presents BLEU score comparisons, where ET5 
outperforms ALSI-Transformer, PEGASUS, and GPT-3, 
achieving 0.77 on MultiWOZ and 0.76 on DailyDialog and 
SQuAD, showing superior fluency and relevance in 
generation tasks. 

4.2.2. BLEU SCORES 

 
Fig. 5 – BLEU Score. 

4.2.3. WER SCORES 
Figure 6 shows the Word Error Rate (WER) across models 

and datasets. The proposed ET5 achieves the lowest WER, 
with 0.13 on NarrativeQA and 0.15 on SQuAD, 
outperforming GPT3 and PEGASUS, indicating higher 
accuracy and fewer generation errors. 
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Fig. 6 – WER Score. 

5. CONCLUSION AND FUTURE SCOPE 
This research presents the Enhanced T5 (ET5) 

architecture, a novel extension of the traditional T5 model 
designed to overcome the inherent limitations in contextual 
understanding and feature modulation. By incorporating 
CDARA and NS-GLU, ET5 significantly enhances the 
ability to capture intricate dependencies across both token 
sequences and embedding dimensions. CDARA enables 
comprehensive dual-dimensional attention, while NS-GLU 
introduces a smooth, adaptive non-linearity to replace static 
feed-forward layers. Empirical evaluation across four 
benchmark datasets, including NarrativeQA, SQuAD, 
MultiWOZ, and DailyDialog, demonstrates that ET5 
consistently outperforms established models such as GPT -
3, PEGASUS, and T5 LSTM FusionNet, achieving 
BERTScore scores of up to 0.971, BLEU scores of 0.77, and 
WER as low as 0.13. The model's strong performance 
confirms its effectiveness in producing more accurate, 
semantically rich, and contextually grounded responses. 

While ET5 shows notable improvements, future work 
includes incorporating reinforcement learning with human 
feedback for personalization, extending it to multimodal 
inputs (text, images, audio), and optimizing for low-resource 
settings. Emphasis will also be placed on enhancing 
interpretability and fairness for transparent, responsible AI 
communication. 
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