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In certain instances, the conventional performance definitions can lead to misinterpretations in the control of linear systems. 

Hence, it becomes imperative to rectify these definitions. This paper presents new, precise definitions of performance metrics, 

along with significant insights into the transient and steady-state phases. Specifically addressing step responses, we refine 

conventional definitions of overshoot, rise time, and settling time for systems with final response values of zero. Furthermore, we 

give due consideration to the open-loop phase margin in stable systems. For the ramp response of controlled systems, where final 

values tend to infinity, we introduce new, accurate definitions of overshoot and settling time that apply in such cases. Numerous 

illustrative simulation examples are provided for each appended note. 

1. INTRODUCTION 

Modern control techniques for robotics, industry, and 

cybernetics are incorporated into automatic regulation, 

which is recently dubbed "automatic control". This is mostly 

because electronics first emerged, followed by the 

microprocessor in the Sixties and data processing as a result. 

However, it is important to emphasize that even in fields as 

complicated as nuclear power, the traditional methods of 

regulation are still commonly employed. The goal of the 

automation engineer or control designer is always to raise the 

regulated systems' performance and bring them up to the 

required standards. The stability, which is defined by the 
final value in a steady state, the initial overshoot in a transient 

state, and the speed, which is determined by the rise time and 

settling time, are among these performances.  

Most analog system designs have oscillatory transient 

behavior, which is unacceptable because it causes incorrect 

input sequence interpretation and an improper sequence of 

control operations. Maximum overshoot is a crucial and 

obvious indicator of the effectiveness of transitory responses. 

This index has drawn the attention of several authors, who 

view it as the most significant indicator of the stability of 

regulated systems [1–3]. 

The control systems are designed in accordance with the 

minimum value of the settling time. It considers it as a 

performance to increase the speed in controlling systems, 

according to the bibliographic references [4–8]. These recent 

publications demonstrate the significance of this parameter 

in control systems. 

A positive phase margin is sought after by the authors of 

certain recent studies to ensure stability [9–10]; however, 

many systems, such as non-minimum phase systems, can be 

stabilized with a negative phase margin [11,12]. 

For stable step responses in the steady state with final 

values that are not zero, all these performances have been 

precisely described. Sadly, certain parameter definitions 

must be altered if the result is zero. The fact that the 

responses in the case of system tracking follow this ramp and 

suggest that the final value tends towards infinity means that 

we also need other definitions of these performances in 

addition to the ramp responses. Particularly dependent on the 

control and tracking of linear systems are several works and 

bibliographical references linked to this topic [11–15].  

This paper's key contribution is the development of new 

valid definitions for some traditional properties of linear 

controlled systems, including overshoot, rise time, settling 

time, and phase margin. Nevertheless, we reformulate these 

results using fresh, accurate formulas tailored to specific 

step- and ramp-response scenarios. 

The main contribution of this article is divided into two 

parts: The first part focuses on a significant modification of 

two key parameters related to the time-domain performance 

of linear system responses. Additionally, it highlights an 

important observation regarding systems with negative 

phase margins, which affects their stability in the frequency 

domain. The two parameters in question are overshoot and 

settling time, specifically in cases where the steady-state 

response tends to zero. These parameters hold practical 

significance for control system designers aiming to enhance 

stability and speed during the transient phase. 

The second part introduces, for the first time, new 

definitions of overshoot and settling time for systems 

subjected to a ramp input in the time domain. 

The content of the paper is as follows: Section 2 presents 

comments on the performance of step responses, including 

maximum overshoot, settling time, and phase margin. 

Revised definitions for maximum overshoot and settling 

time in ramp time responses are also provided in this section. 

Section 3 summarizes the conclusions. 

2. REFORMULATION OF PERFORMANCE 

DEFINITIONS  

In this paragraph, some remarks on temporal performance, 

such as settling time, maximum overshoot, and final value, 

are included, along with their new definitions. Additionally, 

an important note on frequency performance, specifically 

phase margin, is added. 

2.1 FOR STEP INPUT RESPONSE 

Numerous systems, when stimulated by a step input, 

generate stable step responses, leading to final values 

approaching non-zero finite values. However, some systems 

yield final values that are close to zero. In such instances, the 

definitions of specific performance parameters mentioned 

earlier need to be adjusted due to these zero final values, as 
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elaborated in the subsequent paragraphs. 

2.1.1 MAXIMUM OVERSHOOT 

The conventional definition of maximum overshoot is 

outlined as follows: 

• Maximum overshoot (MO): It represents the vertical gap 

between the maximum peak of the response curve and 

the horizontal line from unity (the final value). 

• Percent overshoot (PO%): it quantifies the extent to 

which the underdamped step response surpasses the 

steady-state or final value at the peak time, expressed as 

a percentage of the steady-state value [11, 13]. This 

definition can be formulated using the following 

equation [13–16]: 

 𝑃𝑂% = (
𝑀𝑡𝑝−𝑓𝑣

𝑓𝑣
100)  %.  (1) 

In the context of this definition, where 𝑀𝑡𝑝 represents the 

time response's peak value, and 𝑓𝑣 is the response's final 

value. In situations where the final value converges to zero 

(or nearly zero), as depicted in Fig. 1, it can be inferred from 

this definition that the percent overshoot tends towards 

infinity. It's important to note that this scenario signifies the 

system's relative stability. 

 

Fig. 1 – Stable step response in a closed loop where the percent overshoot 

tends to infinity. 

• New definition of maximum overshoot 

The magnitude of the highest overshoot is referred to as 

the maximum overshoot (MO), and it typically occurs 

initially. As indicated in equation (3), the MO is a concluding 

value; hence, it can be recalculated in relation to the input 

value rather than the final value, as follows: 

𝑃𝑂% = lim
𝑢→α

(𝑀𝑡𝑝+𝑢)−(𝑓𝑣+𝑢)

(𝑓𝑣+𝑢)
× 100% =

𝑀𝑡𝑝

α
× 100%.   (2) 

For the transient response to a unit-step input (𝑢 = 𝛼 = 1), 

the maximum overshoot is defined as follows: 

 𝑃𝑂% = 𝑀𝑡𝑝x100%.  (3) 

This value is well justified for the designer, as it results in 

a finite percentage. In contrast, the conventional definition 

indicates an overshoot tending toward infinity, which would 

imply that the system is unstable. However, the system 

remains stable. 

✓ Remark 1: When (𝑢 = 𝛼 =0) (system enslaved to 

tracking zero value), directly use the PO% value 

described in equation (3). 

✓ Example 1: Consider a linear system defined by its 

open-loop transfer function 𝐺(𝑝): 

 𝐺(𝑝) =
𝑝(𝑝+12)

𝑝2+2𝑝+111
.  (4) 

This system is placed in a closed loop with unit feedback 

(Fig. 2). 

 

Fig. 2 – Simple control loop. 

The step response (system excited by a unit step) of this 

closed-loop system is illustrated in Fig. 3.  

 

Fig. 3 – Stable step response in a closed-loop where the percent overshoot 

tends to infinity. 

Figure 3 indicates that MO is approaching infinity, even 

though the response is stable and tends towards a finite value of 

zero. This poses a challenge for the designer in deciding whether 

to add a regulator to the closed loop to reduce the overshoot.  

According to the traditional eq. (1), the overshoot value is 

infinite, which fails to provide a meaningful indication of 

stability, even though the system is stable in steady state. 

Additionally, the distance between the peak response and the 

final value remains finite (see Fig. 3). Therefore, it becomes 

necessary to modify formula (1) and replace it with the 

proposed alternative (3) to account for this specific case 

accurately. 

Applying eq. (3), where the overshoot is determined by the 

excitation input value, yields a result of 𝑀𝑂% = 𝑀𝑡𝑝 ×

100% = 57.6%. This value signifies that the maximum 

deviation is 57.6% compared to the unit step, Fig. 4. 

This new overshoot value indicates that the system is 

stable since it remains finite. Additionally, the designer takes 

this finite value into account to develop an appropriate 

control strategy aimed at minimizing oscillations during the 

transient response. 
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Fig. 4 – The percentage overshoot is calculated using a unit step input. 

2.1.2 SETTLING TIME 

The classical definition of settling time is commonly 

explained in various books and research papers as follows: 

Settling time, denoted as 𝑡𝑠 is the duration required for 

system transients to decay [17-18]. Alternatively, it is 

defined as the time it takes for an output 𝑠(𝑡) to reach and 

remain within a tolerance range surrounding the final value 

𝑓𝑣 (± 10%, ± 5%, or ± 2%) [15]. This definition can be 

expressed quantitatively (in the case of ±5%) as follows: 

 𝑠(𝑡𝑠) = 𝑓𝑣 ± (𝑡𝑠𝑥%)x𝑓𝑣.  (5) 

To calculate the value of 𝑡𝑠, one must solve equation (5). 

Several recent practical studies have used this important 

parameter to measure the speed of control systems, such as 

power systems [19].  

However, when 𝑓𝑣 = 0 the solution of the above equation 

remains the same for all percentage cases (2%, 5%, ...). 

Therefore, the classical definition of settling time needs to be 

redefined with a new definition suitable for the scenario of a 

zero final value in the controlled system response. It is 

imperative to re-solve equation (5) using the following new 

definition. 

• New definition of settling time 

Settling time (𝑡𝑠) represents the duration for the step 

response to stabilize and maintain a specific distance from its 

final value. Commonly used percentages for this distance are 

2% and 5% [14]. The conventional expression for settling 

time, as defined in eq. (5), needs to be rephrased for systems 

where responses converge to a final value of zero, resulting 

in the new formulation (Fig. 5): 

 𝑠(𝑡𝑠) = ±(𝑡𝑠𝑥%). (6) 

where: 𝑡𝑠𝑥% = 2% = 0.02 or 𝑡𝑠𝑥% = 5% = 0.05. 

Figure 5 shows that the analytical solution (settling time) 

for the response time of equation (6) is 𝑡𝑠5% = 1.18 𝑠. 

✓ Remark 2: The settling time corresponds to the 

maximum instant among the solutions to eq. (6) based 

on the preceding definition and computation of 𝑡𝑠 (see 

Fig. 5).  

 

Fig. 5 – Determination of the settling time where the final value equals zero. 

2.1.3 PHASE MARGIN   

In cases where the phase margin is negative, the authors 

cited in the bibliographic reference [5] assert that the system 

is considered unstable. However, it can be deduced from 

several simulation instances that a negative phase margin 

value (evidently in open loop) does not always signify 

instability in the closed loop (refer to Fig. 6). Following the 

"Nyquist" reverse criterion, the system is deemed stable in a 

closed loop if the Nyquist diagram positions the critical point 

(-1, 0) to its left [16, 18, 20]. This implies that the intersection 

of the curve with the unit circle produces either a positive or 

a negative phase margin. 

 
✓ Example 2: The following linear system, defined by its 

open-loop transfer function, is considered: 

 𝐺(𝑝) =  
𝑝2

𝑝2+𝑝+1
.  (7) 

Figure 6 illustrates the Nyquist Diagram of the open-loop 

system. 

 
Fig. 6 – Negative phase margin according to the Nyquist diagram. 

Despite having a negative phase margin, the system is 

stable in a closed loop (Fig. 6). However, most designers tend 

to immediately conclude that the system is unstable solely 

based on its negative phase margin. 

 

✓ Remark 3: Sometimes the stable transfer function is 

multiplied by a negative gain, which causes the issue of 

the phase margin value having a negative sign. The error 

signal can be thought of as the output feedback signal 



546 Accurate terms of controlled linear systems performance 4 

 

minus the reference signal to obtain a positive phase 

margin value [21–24]. 

2.2 FOR RAMP INPUT RESPONSE 

This section furnishes various definitions for the 

performance metrics mentioned earlier, including the settling 

time in the ramp response. Conversely, considering the 

potential risk of compromising the closed-loop control 

system when an undesirable maximum overshoot value is 

present within specified criteria, the significance of the 

maximum value of the first half-wave in the ramp response 

is highlighted by the initial overshoot. This provides insight 

into the accuracy of tracking the ramp in a transient state. 

2.2.1 MAXIMUM OVERSHOOT  

• Case of non-unitary ramp input 

The procedures listed below can be used to determine the 

proper formulation of the maximum overshoot in the case of 

a non-unitary ramp input.  

Given that the input follows the form of equation (8): 

 𝑦(𝑡) = 𝑎𝑡.  (8) 

with:  tan(θ) = 𝑎  or   θ = atan(𝑎). 

The line with slope 𝑎 (parallel to the reference line) passes 

through the point (𝑡𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) and intersects the line 𝑡 = 0 

at point (0, 𝑏); the equation for this line is as follows: 

 𝑦(𝑡) = 𝑎𝑡 + 𝑏.  (9) 

Fig. 7 – Maximum overshoot of the response to a non-unit ramp. 

In this instance, from equation (9) the extreme points are 

given by equation (10). 

 
d𝑦(𝑡)

d𝑡
= 𝑎.  (10) 

The first moment is obtained by setting 𝑡𝑚𝑎𝑥 = min (𝑡𝑖), and 

the greatest value 𝑦𝑚𝑎𝑥  of the response is obtained at this 

instant, 𝑦𝑚𝑎𝑥 = 𝑦(𝑡𝑚𝑎𝑥). 

The value of 𝑏 can be calculated using eq. (9) as: 

𝑦𝑚𝑎𝑥 = 𝑎. 𝑡𝑚𝑎𝑥 + 𝑏     ⇒    𝑏 = 𝑦𝑚𝑎𝑥 − 𝑎𝑡𝑚𝑎𝑥 .   (11) 

Equation (12) can then be used to determine the value of 

the maximum overshoot, as shown in Fig. 7. 

 cos(θ) =
|𝐷|

|𝑏|
   ⇒   |𝐷| = |𝑏|cos(θ).  (12) 

Equation (12) allows us to reformulate the maximum 
overshoot equation for a non-unitary ramp input as follows:  

 |𝐷|% =
|𝑏|cos(θ)

100
. (13) 

• Case of unit ramp input 

In this case, setting the response's derivative to 1 (directly 

parallel to the unitary ramp) yields the output's maximum 

value: 

 
d𝑦(𝑡)

d𝑡
= 1.  (14) 

The solution of this equation yields instances of the values 

of extremes (minimums and maximums); 𝑦𝑚𝑎𝑥 = 𝑦(𝑡𝑚𝑎𝑥) is 

the response's maximum value at the precise moment 𝑡𝑚𝑎𝑥 . 

When cutting the line t = 0 at point (0, b), the line with slope 

1 (parallel to the reference line) passes through point (𝑡𝑚𝑎𝑥 , 

𝑦𝑚𝑎𝑥) and bears the following equation: 

𝑦 = 𝑡 + 𝑏.  (15) 

One can determine the value of b from the point (𝑡𝑚𝑎𝑥 , 

𝑦𝑚𝑎𝑥) as follows: 

𝑦𝑚𝑎𝑥 = 𝑡𝑚𝑎𝑥 + b            ⇒        b = 𝑦𝑚𝑎𝑥 − 𝑡𝑚𝑎𝑥 .   (16) 

On the other hand, Fig. 8 shows that one can calculate the 

overshoot's absolute value as follows: 

 sin (
π

4
) = cos (

π

4
) =

|𝐷|

|𝑏|
=

1

√2
  (17) 

 ⇒ |𝐷| =
|𝑏|

√2
.  (18) 

Fig. 8 – Maximum response overshoot to a unit ramp. 

Substituting of eq. (16) in eq. (18) gives: 

 |𝐷| =
|𝑦𝑚𝑎𝑥−𝑡𝑚𝑎𝑥|

√2
.  (19) 

In the case of unit ramp input and based on Equation (19), 

the maximum overshoot expression can be rewritten as 

follows:  

 |𝐷|% =
|𝑦𝑚𝑎𝑥−𝑡𝑚𝑎𝑥|

100√2
  (20) 

2.2.2 SETTLING TIME  

In this study, the settling time expression is reformulated 

for two input scenarios: unit and non-unitary ramp. 

• Case of non-unitary ramp input 
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The equation of the line cut by the response curve in the 

case of a non-unitary ramp input is provided by: 𝑦(𝑡) =
𝑎′𝑡 + 𝑏′, and the settling time to 𝛿% is derived as follows 

(Fig. 9). We have: 

sin (
π

2
− θ) =

δ/100

𝑏′
= cos (θ)⇒ 𝑏′ =

𝛿

100cos (𝜃)
   (21) 

with θ = atan(𝑎′). 

Finally, the settling time δ% must correspond to the last 

instant ts among the eq. (22) solutions: 

 𝑦(𝑡𝑠) = 𝑎′𝑡𝑠 ±
𝛿

100cos (θ)
.  (22) 

Example 3: Consider a unit feedback tracking loop with a 

linear system of the transfer function 𝐺(𝑝): 

 𝐺(𝑝) =
12

2𝑝2+𝑝+0.01
. (23) 

A ramp with a 1.5 slope ( 𝑟(𝑡) = 1.5𝑡) is used to excite 

the system. Figure 9 illustrates the system's response to this 

reference. To obtain the 5% response time, the formulas 

quoted above are applied: θ = atan(𝑎′) = atan(1.5) =
56.3103°  

and from equation (22) one can obtain: 

Fig. 9 – Settling period of a non-unit ramp's response. 

𝑦(𝑡𝑠) = 𝑎′𝑡𝑠 ±
δ

100 cos(θ)
 = 1.5𝑡𝑠 ±

5

100 cos(56.3103°)
. (24) 

 ⇒        𝑦(𝑡𝑠) =  1.5𝑡𝑠 ± 0.0901.  (25) 

On the other hand, the expression of the response is 

obtained using the Laplace transform: 

 𝐻(𝑝) =
𝐺(𝑝)

1+𝐺(𝑝)
=

𝑌(𝑝)

𝑅(𝑝)
=

6

𝑝2+0.5𝑝+6.005
  (26) 

                 ⇒      𝑌(𝑝) = 𝐻(𝑝). 𝑅(𝑝) =
6

𝑝2+0.5𝑝+6.005
.

1.5

𝑝2  

 =
9

𝑝2(𝑝2+0.5𝑝+6.005 )
   (27) 

⇒ 𝑦(𝑡) =  𝑇𝐿−1(𝑌(𝑝)) =  1.4988𝑡 − 0.1248 +
𝑒−0.25𝑡[0.1248cos (2.4377𝑡) − 0.6020sin (2.4377𝑡)] (28) 

Equation (29) can be created using eq. (25) and (28), and 

it takes the following form:  

1.4988𝑡𝑠 − 0.1248 + 𝑒−0.25𝑡𝑠[0.1248cos (2.4377𝑡𝑠) −
0.6020sin (2.4377𝑡𝑠)] =  1.5𝑡𝑠 ± 0.0901.       (29) 

We'll search for any moments that meet the two equations 

that follow, which are derivations of equation (29):  

−0.0012𝑡𝑠 − 0.2149 + 𝑒−0.25𝑡𝑠[0.1248cos (2.4377𝑡𝑠) −
0.6020sin (2.4377𝑡𝑠)] = 0,                 (30) 

or 

−0.0012𝑡𝑠 − 0.0347 + 𝑒−0.25𝑡𝑠  [0.1248 ×  

 cos (2.4377𝑡𝑠) − 0.6020sin (2.4377𝑡𝑠)] =   0.  (31) 

Within the time range [0, 20], the solutions of eq. (30) and 

(31) that were found are, respectively: 

𝑡1 = 1.6000 ; 𝑡2 = 2.3756 ; and 𝑡1 = 0.0603 ; 𝑡2 =
1.4052 ; 𝑡3 = 2.6128 ;  𝑡4 = 4.0226 ;  𝑡5 = 5.1393 ;  𝑡6 =

6.6823 ;  𝑡7 = 7.6115 ; 𝑡8 = 9.4875 ;  𝑡9 = 9.9275. 

In accordance with the definition of settling time, the last 

solution (i.e., t9) will be selected. So, the settling time will 

be: 𝑡𝑠5% =  9.9275 s. 
Now, to calculate the overshoot, the eq. (10), (11), and 

(12) are used: 

d𝑦(𝑡)

d𝑡
= 1.4988 − 𝑒−0.25𝑡[1.4987 cos(2.4377𝑡𝑠) + 

+0.1537sin (2.4377𝑡𝑠)] .                        (32) 

We set 
d𝑦(𝑡)

d𝑡
= 𝑎 = 1.5; this yields the following equation: 

d𝑦(𝑡)

d𝑡
= 1.4988 − 𝑒−0.25𝑡 [

1.4987 cos(2.4377𝑡) +
0.1537 sin(2.4377𝑡)

] = 1.5, (33) 

⇒   −0.0012 − 𝑒−0.25𝑡 [
1.4987 cos(2.4377𝑡) +

0.1537 sin(2.4377𝑡)
] = 0  (34) 

The solutions of eq. (34) in the time interval [0, 20] are: 

𝑡1 = 0.6866 ; 𝑡2 = 1.9745 ;  𝑡3 = 3.2645; 𝑡4

= 4.5515 ;  𝑡5 = 5.1393 ;  𝑡6

= 5.8425 ; 𝑡7 = 7.1281 ; 𝑡8

= 8.4215 ;  𝑡9 = 9.7035; 𝑡10

= 12.2780 ; 𝑡11 = 13.5835; 𝑡12

= 14.8492 ;  𝑡13 = 16.1699 ;  𝑡14

= 17.4151 ; 𝑡15 = 18.7645 ; 𝑡16

= 19.9693 ;  

The first solution (the first moment) will be chosen, as 

indicated in sub-subsection 2.2.1; so 𝑡𝑚𝑎𝑥 = 0.6866 𝑠. 

This solution is used for the calculation of a constant 𝑏 as 

follows. 

𝑦𝑚𝑎𝑥 = 𝑦(𝑡𝑚𝑎𝑥) = 0.3891 ⇒    𝑏 = 𝑦𝑚𝑎𝑥 − 𝑎. 𝑡𝑚𝑎𝑥 =
0.3891 − 1.5 ∗ 0.6866               ⇒    𝑏 = − 0.6408. (35) 

 
Fig. 10 – Settling time of the response to a unit ramp. 
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Then, the value of the maximum overshoot will be: 

|𝐷| = |𝑏| cos(θ)    
⇒    |𝐷| = |−0.6408| cos( 56.3103° ) 

 ⇒   |𝐷|  = 0.3554 ⇒    |𝐷|% = 35.54   %  (36) 

• Case of unit ramp input 

In the case of unit ramp input, the settling time δ% is 

defined by cutting the response to the line of the equation 

𝑦(𝑡) = 𝑡 ±  𝑏′, as shown in Fig. 10. 

We can calculate 𝑏′ as follows:  

 sin (
π

4
) =

δ/100

𝑏′
=

1

√2
      ⇒      𝑏′ =

√2δ

100
.  (37) 

The first switching time 𝑡𝑠 is determined as the settling time to 

δ%:    𝑦(𝑡𝑠) = 𝑡𝑠 ±
√2δ

100
.                       (38) 

3. CONCLUSIONS 

This paper endeavors to draw attention to specific insights 

pertaining to the efficacy of time and frequency responses 

within dynamic linear systems, especially when the ultimate 

values or equilibrium points converge towards zero. 

Furthermore, novel interpretations of overshoot and settling 

time are presented within the framework of excitation 

induced by a ramp. These performance metrics carry 

substantial significance, emphasizing the imperative for 

automation engineers to meticulously incorporate them into 

their assessments to avert potential instabilities, particularly 

during transient states. Depending solely on traditional 

definitions of settling time, maximum overshoot, and phase 

margin may lead to misconstrued findings, thereby 

negatively impacting the understanding of outcomes. 
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