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SIGNIFICANT NOTES AND NEWLY DEFINED ACCURATE TERMS
REGARDING CONTROLLED LINEAR SYSTEMS
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In certain instances, the conventional performance definitions can lead to misinterpretations in the control of linear systems.
Hence, it becomes imperative to rectify these definitions. This paper presents new, precise definitions of performance metrics,
along with significant insights into the transient and steady-state phases. Specifically addressing step responses, we refine
conventional definitions of overshoot, rise time, and settling time for systems with final response values of zero. Furthermore, we
give due consideration to the open-loop phase margin in stable systems. For the ramp response of controlled systems, where final
values tend to infinity, we introduce new, accurate definitions of overshoot and settling time that apply in such cases. Numerous
illustrative simulation examples are provided for each appended note.

1. INTRODUCTION

Modern control techniques for robotics, industry, and
cybernetics are incorporated into automatic regulation,
which is recently dubbed "automatic control". This is mostly
because electronics first emerged, followed by the
microprocessor in the Sixties and data processing as a result.
However, it is important to emphasize that even in fields as
complicated as nuclear power, the traditional methods of
regulation are still commonly employed. The goal of the
automation engineer or control designer is always to raise the
regulated systems' performance and bring them up to the
required standards. The stability, which is defined by the
final value in a steady state, the initial overshoot in a transient
state, and the speed, which is determined by the rise time and
settling time, are among these performances.

Most analog system designs have oscillatory transient
behavior, which is unacceptable because it causes incorrect
input sequence interpretation and an improper sequence of
control operations. Maximum overshoot is a crucial and
obvious indicator of the effectiveness of transitory responses.
This index has drawn the attention of several authors, who
view it as the most significant indicator of the stability of
regulated systems [1-3].

The control systems are designed in accordance with the
minimum value of the settling time. It considers it as a
performance to increase the speed in controlling systems,
according to the bibliographic references [4—8]. These recent
publications demonstrate the significance of this parameter
in control systems.

A positive phase margin is sought after by the authors of
certain recent studies to ensure stability [9-10]; however,
many systems, such as non-minimum phase systems, can be
stabilized with a negative phase margin [11,12].

For stable step responses in the steady state with final
values that are not zero, all these performances have been
precisely described. Sadly, certain parameter definitions
must be altered if the result is zero. The fact that the
responses in the case of system tracking follow this ramp and
suggest that the final value tends towards infinity means that
we also need other definitions of these performances in
addition to the ramp responses. Particularly dependent on the
control and tracking of linear systems are several works and

bibliographical references linked to this topic [11-15].

This paper's key contribution is the development of new
valid definitions for some traditional properties of linear
controlled systems, including overshoot, rise time, settling
time, and phase margin. Nevertheless, we reformulate these
results using fresh, accurate formulas tailored to specific
step- and ramp-response scenarios.

The main contribution of this article is divided into two
parts: The first part focuses on a significant modification of
two key parameters related to the time-domain performance
of linear system responses. Additionally, it highlights an
important observation regarding systems with negative
phase margins, which affects their stability in the frequency
domain. The two parameters in question are overshoot and
settling time, specifically in cases where the steady-state
response tends to zero. These parameters hold practical
significance for control system designers aiming to enhance
stability and speed during the transient phase.

The second part introduces, for the first time, new
definitions of overshoot and settling time for systems
subjected to a ramp input in the time domain.

The content of the paper is as follows: Section 2 presents
comments on the performance of step responses, including
maximum overshoot, settling time, and phase margin.
Revised definitions for maximum overshoot and settling
time in ramp time responses are also provided in this section.
Section 3 summarizes the conclusions.

2. REFORMULATION OF PERFORMANCE
DEFINITIONS

In this paragraph, some remarks on temporal performance,
such as settling time, maximum overshoot, and final value,
are included, along with their new definitions. Additionally,
an important note on frequency performance, specifically
phase margin, is added.

2.1 FOR STEP INPUT RESPONSE

Numerous systems, when stimulated by a step input,
generate stable step responses, leading to final values
approaching non-zero finite values. However, some systems
yield final values that are close to zero. In such instances, the
definitions of specific performance parameters mentioned
earlier need to be adjusted due to these zero final values, as
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elaborated in the subsequent paragraphs.

2.1.1 MAXIMUM OVERSHOOT
The conventional definition of maximum overshoot is
outlined as follows:

e  Maximum overshoot (MO): It represents the vertical gap
between the maximum peak of the response curve and
the horizontal line from unity (the final value).

e Percent overshoot (PO%): it quantifies the extent to
which the underdamped step response surpasses the
steady-state or final value at the peak time, expressed as
a percentage of the steady-state value [11, 13]. This
definition can be formulated using the following
equation [13-16]:

PO% = (Mtj’c—‘f 100) %. (1)

In the context of this definition, where My, represents the
time response's peak value, and f, is the response's final
value. In situations where the final value converges to zero
(or nearly zero), as depicted in Fig. 1, it can be inferred from
this definition that the percent overshoot tends towards
infinity. It's important to note that this scenario signifies the
system's relative stability.

Step Response

Step response]

System: Step response
Peak amplitude: 0.156
Overshoot (%):

At time (seconds): 1.11

MO=0.156= finite value

System: Step response
Final value: 0

Amplitude
. .

Time (seconds)

Fig. 1 — Stable step response in a closed loop where the percent overshoot
tends to infinity.

e  New definition of maximum overshoot

The magnitude of the highest overshoot is referred to as
the maximum overshoot (MO), and it typically occurs
initially. As indicated in equation (3), the MO is a concluding
value; hence, it can be recalculated in relation to the input
value rather than the final value, as follows:

(Mep+uw)—(fy+uw)

oh T
P0% = lim ot

u-a

x 100% = "2 x 100%. (2)

For the transient response to a unit-step input (u = a = 1),
the maximum overshoot is defined as follows:

PO% = M,;,x100%. 3)

This value is well justified for the designer, as it results in
a finite percentage. In contrast, the conventional definition
indicates an overshoot tending toward infinity, which would
imply that the system is unstable. However, the system
remains stable.
v Remark I: When (u= a =0) (system enslaved to
tracking zero value), directly use the PO% value

described in equation (3).
v' Example 1: Consider a linear system defined by its
open-loop transfer function G (p):

G(p) =

This system is placed in a closed loop with unit feedback
(Fig. 2).

E(p) +( )

- &

p(p+12)
p2+2p+111° (4)

S(p)

Fig. 2 — Simple control loop.

The step response (system excited by a unit step) of this
closed-loop system is illustrated in Fig. 3.
Step Response

- i System: h
95| Peak amplitude: 0.576
{ Overshoot (%): Inf&?? PO%
0.4 [ | Attime (seconds): 0.0658
|
I
I

]

Amplitude
L)

|
|
|

! but MO= fikite value 222

oY

System: h

T Final value: 0 -

-0.2

05 1 1.5

Time (seconds)

Fig. 3 — Stable step response in a closed-loop where the percent overshoot
tends to infinity.

Figure 3 indicates that MO is approaching infinity, even
though the response is stable and tends towards a finite value of
zero. This poses a challenge for the designer in deciding whether
to add a regulator to the closed loop to reduce the overshoot.

According to the traditional eq. (1), the overshoot value is
infinite, which fails to provide a meaningful indication of
stability, even though the system is stable in steady state.
Additionally, the distance between the peak response and the
final value remains finite (see Fig. 3). Therefore, it becomes
necessary to modify formula (1) and replace it with the
proposed alternative (3) to account for this specific case
accurately.

Applying eq. (3), where the overshoot is determined by the
excitation input value, yields a result of MO% = M, X
100% = 57.6%. This value signifies that the maximum
deviation is 57.6% compared to the unit step, Fig. 4.

This new overshoot value indicates that the system is
stable since it remains finite. Additionally, the designer takes
this finite value into account to develop an appropriate
control strategy aimed at minimizing oscillations during the
transient response.
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Step Response

step response
= nit step input

System: step response
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System: step response
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Fig. 4 — The percentage overshoot is calculated using a unit step input.

2.1.2 SETTLING TIME

The classical definition of settling time is commonly
explained in various books and research papers as follows:
Settling time, denoted as tg is the duration required for
system transients to decay [17-18]. Alternatively, it is
defined as the time it takes for an output s(t) to reach and
remain within a tolerance range surrounding the final value
fo (& 10%, £ 5%, or + 2%) [15]. This definition can be
expressed quantitatively (in the case of £5%) as follows:

s(ts) = fo £ (Esxop)Xfo- (5)

To calculate the value of t,, one must solve equation (5).

Several recent practical studies have used this important
parameter to measure the speed of control systems, such as
power systems [19].

However, when f;, = 0 the solution of the above equation
remains the same for all percentage cases (2%, 5%, ...).
Therefore, the classical definition of settling time needs to be
redefined with a new definition suitable for the scenario of a
zero final value in the controlled system response. It is
imperative to re-solve equation (5) using the following new
definition.

e New definition of settling time

Settling time (tg) represents the duration for the step
response to stabilize and maintain a specific distance from its
final value. Commonly used percentages for this distance are
2% and 5% [14]. The conventional expression for settling
time, as defined in eq. (5), needs to be rephrased for systems
where responses converge to a final value of zero, resulting
in the new formulation (Fig. 5):

s(ts) = £(Esxn)-
where: ts,0, = 2% = 0.02 or t4,0, = 5% = 0.05.

(6)

Figure 5 shows that the analytical solution (settling time)
for the response time of equation (6) is tg50, = 1.18 s.

v' Remark 2: The settling time corresponds to the
maximum instant among the solutions to eq. (6) based
on the preceding definition and computation of t, (see
Fig. 5).

Step Response

step response

Amplitude

System: step response
y Settling time (seconds): 1.18

s(ts)=-0.05

Time (seconds)

Fig. 5 — Determination of the settling time where the final value equals zero.

2.1.3 PHASE MARGIN

In cases where the phase margin is negative, the authors
cited in the bibliographic reference [5] assert that the system
is considered unstable. However, it can be deduced from
several simulation instances that a negative phase margin
value (evidently in open loop) does not always signify
instability in the closed loop (refer to Fig. 6). Following the
"Nyquist" reverse criterion, the system is deemed stable in a
closed loop if the Nyquist diagram positions the critical point
(-1, 0) toits left [16, 18, 20]. This implies that the intersection
of the curve with the unit circle produces either a positive or
a negative phase margin.

v' Example 2: The following linear system, defined by its
open-loop transfer function, is considered:

Gp) = 52

p24+p+1’

()

Figure 6 illustrates the Nyquist Diagram of the open-loop
system.

Nyquist Diagram

2dB o8 2dg  L=——Nyquistdiagram
-4 dB
1 -

4dB System: sys
6dB Phase Margin (deg): -90

).5 Delay Margin (sec): 4.71

10°dB At frequency (rad/s): 1

|20 dB .20 Closed loop stable? Yes

Imaginary Axis

1 0.8 0.6 0.4 0.2 0.4 0.6 0.8 1

0 V.2
Real Axis

Fig. 6 — Negative phase margin according to the Nyquist diagram.

Despite having a negative phase margin, the system is
stable in a closed loop (Fig. 6). However, most designers tend
to immediately conclude that the system is unstable solely
based on its negative phase margin.

v' Remark 3: Sometimes the stable transfer function is
multiplied by a negative gain, which causes the issue of
the phase margin value having a negative sign. The error
signal can be thought of as the output feedback signal
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minus the reference signal to obtain a positive phase
margin value [21-24].

2.2 FOR RAMP INPUT RESPONSE

This section furnishes various definitions for the
performance metrics mentioned earlier, including the settling
time in the ramp response. Conversely, considering the
potential risk of compromising the closed-loop control
system when an undesirable maximum overshoot value is
present within specified criteria, the significance of the
maximum value of the first half-wave in the ramp response
is highlighted by the initial overshoot. This provides insight
into the accuracy of tracking the ramp in a transient state.

2.2.1 MAXIMUM OVERSHOOT

e Case of non-unitary ramp input

The procedures listed below can be used to determine the
proper formulation of the maximum overshoot in the case of
a non-unitary ramp input.

Given that the input follows the form of equation (8):

y(t) = at. ®)

with: tan(0) = a or 0 = atan(a).

The line with slope a (parallel to the reference line) passes
through the point (t,,4x> Ymax) and intersects the line t = 0
at point (0, b); the equation for this line is as follows:

y(t) = at + b. C)

Reponse to non-unitary ramp input of a second order system

6 Reponse to non-unitary ramp
Non-unitary ramp input .
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Fig. 7 — Maximum overshoot of the response to a non-unit ramp.

In this instance, from equation (9) the extreme points are
given by equation (10).

dy(t) _
T =a. (10)

The first moment is obtained by setting t,,,,, = min (t;), and
the greatest value y,,,, of the response is obtained at this

instant, Ymax = ¥ (tmax)-
The value of b can be calculated using eq. (9) as:

Ymax = @ tmax + b = b= Ymar — Alpay. (11)

Equation (12) can then be used to determine the value of
the maximum overshoot, as shown in Fig. 7.

L]

cos(0) = o

= |D| = |b|cos(0). (12)

Equation (12) allows us to reformulate the maximum
overshoot equation for a non-unitary ramp input as follows:

__|b|cos(8)
100

D% (13)

e Case of unit ramp input

In this case, setting the response's derivative to 1 (directly
parallel to the unitary ramp) yields the output's maximum
value:

dy(®) _
P 1. (14)

The solution of this equation yields instances of the values
of extremes (minimums and maximums); Ymax = ¥V (Emax) 18
the response's maximum value at the precise moment ¢4,
When cutting the line ¢ = 0 at point (0, b), the line with slope
1 (parallel to the reference line) passes through point (¢4,
Vmax) and bears the following equation:

y=t+b. (15)

One can determine the value of b from the point (&4,
Vmax) as follows:

Ymax = tmax +b = b = Yimax — tmax- (16)

On the other hand, Fig. 8 shows that one can calculate the
overshoot's absolute value as follows:

sin G) = Cos G) = % = % a7

(18)

b
=>|D|=%.

Reponse to unit ramp of a second-order system
I | T Response to a unit ramp
Ramp unit input

3.5

25

Time Reponse
i

05
0 -
5
PPN 50 .. A S Sy Epypup S Ry M
0.5 1 1.5 2 25 3 35 4

Time (s)
Fig. 8 — Maximum response overshoot to a unit ramp.

Substituting of eq. (16) in eq. (18) gives:

_ |Ymax—tmax|
|D| = Dmax—tmas] (19)

In the case of unit ramp input and based on Equation (19),
the maximum overshoot expression can be rewritten as
follows:

_ |Ymax—tmax!
D% = 100v2 (20)

2.2.2 SETTLING TIME
In this study, the settling time expression is reformulated
for two input scenarios: unit and non-unitary ramp.

e (Case of non-unitary ramp input
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The equation of the line cut by the response curve in the
case of a non-unitary ramp input is provided by: y(t) =
a't + b’, and the settling time to §% is derived as follows
(Fig. 9). We have:

. (m o\ _ 8/100 _ - 8
sin (E 9) T cos (9)=> b'= 100cos (8)

e2))

with 8 = atan(a’).
Finally, the settling time §% must correspond to the last
instant ts among the eq. (22) solutions:

8

100cos ()" (22)

y(ts) =a'ts £
Example 3: Consider a unit feedback tracking loop with a
linear system of the transfer function G (p):

G(p) =

A ramp with a 1.5 slope (r(t) = 1.5t) is used to excite
the system. Figure 9 illustrates the system's response to this
reference. To obtain the 5% response time, the formulas
quoted above are applied: 0 = atan(a’) = atan(1.5) =
56.3103°

and from equation (22) one can obtain:

12
2p2+p+0.01°

(23)

Reponse to non-unitary ramp input of a second order system
[ Reponse to non-unitary ramp [ ', -

‘ Non-unitary ramp input e

0.2 04 0.6 0.8 1 1.2 14 16 1.8
Temps (s)

Fig. 9 — Settling period of a non-unit ramp's response.

8
100 cos(0)

5

= 15t £ o cesseatosy 2V

y(ts) = a’ts t

=  y(t,) = 1.5t; + 0.0901. (25)

On the other hand, the expression of the response is
obtained using the Laplace transform:

G _ Y _ 6

H®) = 750 = vy = prrasproos 20)
6 1.5
= Y@ =H®)-RP) = s 2
> 27)

T p2(p2+0.5p+6.005)

= y(t) = TL™Y(Y(p)) = 1.4988t — 0.1248 +
e~0251[0.1248cos (2.4377t) — 0.6020sin (2.4377t)] (28)

Equation (29) can be created using eq. (25) and (28), and
it takes the following form:

1.4988¢, — 0.1248 + e~°25(s[0.1248cos (2.4377t;) —
0.6020sin (2.4377t,)] = 1.5¢t, +0.0901.  (29)

We'll search for any moments that meet the two equations
that follow, which are derivations of equation (29):

—0.0012¢t, — 0.2149 + e~025ts[0.1248cos (2.4377t,) —
0.6020sin (2.4377t,)] = 0, (30)

or
—0.0012t; — 0.0347 + e~-25%s [0.1248 x
cos (2.4377t;) — 0.6020sin (2.4377t,)] = 0. (31)

Within the time range [0, 20], the solutions of eq. (30) and
(31) that were found are, respectively:

t, = 1.6000 ;t, = 2.3756 ; and t; = 0.0603 ;t, =
1.4052 ;t; = 2.6128; t, = 4.0226; t; = 5.1393; t; =
6.6823; t; = 7.6115; ty = 9.4875 ; ty = 9.9275.

In accordance with the definition of settling time, the last
solution (i.e., ty) will be selected. So, the settling time will
be: tgsy, = 9.9275s.

Now, to calculate the overshoot, the eq. (10), (11), and
(12) are used:

dy(t
% = 1.4988 — ¢~025¢[1.4987 cos(2.4377t,) +
+0.1537sin (2.4377t)] . (32)
We set% = a = 1.5; this yields the following equation:
dy(@®) _ o025t [1.4987 cos(2.4377t) +] _
ac — 14988 —e [ 0.1537sin(2.4377¢) | = 1> G3)
B 025 [1:4987 c0s(2.4377t) +] _
= —0.001z—e [ 0.1537 sin(2.4377¢) | = 0 G4

The solutions of eq. (34) in the time interval [0, 20] are:

t; = 0.6866;t, = 1.9745; t; = 3.2645; t,
= 4.5515; tg = 5.1393; t,
=5.8425;t;, = 7.1281 ;tg4
= 8.4215; ty = 9.7035; t;,
=12.2780;t;; = 13.5835; ¢t;,
= 14.8492; t;3 = 16.1699; t,,
= 17.4151;t;5 = 18.7645 ; t;¢
=19.9693;

The first solution (the first moment) will be chosen, as
indicated in sub-subsection 2.2.1; S0 t,;,4, = 0.6866 5.

This solution is used for the calculation of a constant b as
follows.

Ymax = Y(tmax) = 03891 = b = Y — A lpax =

0.3891 — 1.5 x 0.6866 = b=-0.6408. (39
‘ Response o unit ramp ,‘,’
Unit ramp input - <

Réponse

0 0.5 1 1.5 2 25 3 35 4
Temps (s)

Fig. 10 — Settling time of the response to a unit ramp.
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Then, the value of the maximum overshoot will be:
|D| = |b|cos(6)
= |D| =|-0.6408| cos( 56.3103°)

= |D| =03554= |D|%=23554 % (36)

e Case of unit ramp input

In the case of unit ramp input, the settling time 6% is
defined by cutting the response to the line of the equation
y(t) =t £ b’, as shown in Fig. 10.

We can calculate b’ as follows:

. §/100 _ 1 , _ V26
sin(3)=%7=5 = =3 0D
The first switching time ¢, is determined as the settling time to
V25
/s - _
8%: y(ty) =t 00" (38)

3. CONCLUSIONS

This paper endeavors to draw attention to specific insights
pertaining to the efficacy of time and frequency responses
within dynamic linear systems, especially when the ultimate
values or equilibrium points converge towards zero.
Furthermore, novel interpretations of overshoot and settling
time are presented within the framework of excitation
induced by a ramp. These performance metrics carry
substantial significance, emphasizing the imperative for
automation engineers to meticulously incorporate them into
their assessments to avert potential instabilities, particularly
during transient states. Depending solely on traditional
definitions of settling time, maximum overshoot, and phase
margin may lead to misconstrued findings, thereby
negatively impacting the understanding of outcomes.
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