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Integrating physics-based and learning systems enhances fuel cell hybrid electric vehicles (FCHEVs) for better performance control and 

efficient power source operation. Balancing this diverse mix is challenging, given the uncertainties and fluctuations in complex physics-

based modeling. In this framework, our work has a dual purpose. Firstly, precise physics-based modeling enables the effective generation 

of data. This helps gather diverse data resembling real-world scenarios, aiding in drawing reliable conclusions. Several known driving 

cycles were utilized to generate sufficient data for the experiments and findings presented in this work. Secondly, the collected data 

undergoes an advanced representation learning process with adaptive functions, enhancing the interaction between learning models and 

the FCHEV system's physical phenomena. The effectiveness of the suggested approach is validated through a comprehensive evaluation 

of developed algorithms using various visual and numerical metrics. In a comparative analysis, the results illustrate the efficacy of the 

methodology in addressing energy management (EM) challenges in fuel cell hybrid electric vehicles (FCHEVs).

1. INTRODUCTION 

Efficient EM in FCHEVs is essential for sustainable 

operation, improving vehicle efficiency, extending range, 

and optimizing power. Modeling plays a vital role in the 

design of FCHEVs, enabling the evaluation of performance, 

efficiency, and reliability, and ensuring sustainable 

transportation [1,2]. FCHEVs gain from physics-based 

modeling, though their dynamic complexity challenges 

traditional mathematical models and optimization. Capturing 

nonlinear component behavior with uncertainties, such as 

FC, batteries (BT), and ultracapacitors (UC) is challenging. 

Integrating machine learning (ML) significantly enhances 

EM in FCHEV by analyzing real-world data, improving 

predictions, and understanding vehicle performance across 

diverse scenarios [3,4]. Integrating the two enhances EM by 

accounting for electrochemical reactions, temperature, 

humidity, and energy source characteristics [3]. This section 

reviews recent literature, identifies research gaps, highlights 

key contributions, and provides the work's structure. 

1.1 RELATED WORKS ANALYSIS 

This section reviews EM in FCHEVs using ML methods, 

summarized in Table 1. For instance, in [5], the authors used 

a predictive learning system for FCHEVs, forecasting velocity 

(𝑣), power (𝑃), and state of charge (𝑆𝑂𝐶𝐵𝑇). This optimizes 

performance and reduces power fluctuations through the use 

of long-short term memory (LSTM), a wavelet transform 

algorithm (WTA), and a rule-based strategy (RBS) [6]. The 

dataset is derived from 8 standard driving cycles, namely, New 

York City Cycle (NYCC), Economic Commission for Europe 

(ECE), Highway Cycle (US06-HWY), California Highway 

Vehicle Route (CAHVR), United States Emissions Integrated 

Modified 240 (IM240), Representative Test Procedure 2005 

(REP05), West Virginia University City Cycle (WVUCITY), 

and high-temperature (HL07). In [7], an Interconnection and 

Damping Assignment Passivity-Based Control (IDA-PBC) is 

introduced, considering hydrogen levels and 𝑆𝑂𝐶𝐵𝑇 under 

various conditions. An Artificial Neural Network (ANN) 

allocates 𝑃 demand from different sources to enable 

constrained power dispatching. Real Driving Cycles of 

Tramway (RDCT) are used to evaluate the proposed system 

(see [7], Table 1). In [8], the authors proposed a Fuzzy Control 

Strategy (FCS) with Genetic Algorithm (GA) and ANN for 

FCHEVs health monitoring, considering driving cycles of 

diverse conditions: Highway Fuel Economy Test Cycle 

(HWFET), New European Driving Cycle (NEDC), and Urban 

Dynamometer Driving Schedule (UDDS). In addition, 𝑃𝐿𝑜𝑎𝑑 , 

𝑆𝑂𝐶𝐵𝑇, and state of health (𝑆𝑂𝐻𝑓𝑐) are used as inputs and 𝑃𝑓𝑐 

outputs of the learning system. 

A Deep Neural Network (DNN) control framework is 

presented in [9] for EM in FCHEVs. It combines a pseudo-

spectral optimal controller (PSOC) and a DNN predictive 

controller. Two datasets are used: the Argonne National 

Laboratory (ANL) dataset and the Mobile Century project 

dataset (MCPD) to train two DNNs. In [10], the authors 

proposed an EM with Fuzzy Logic (FLC) and GA. 

Table 1 

Cutting-Edge EM-based machine learning in FCHEVs.  

Ref. Year Methods Learning features Driving cycles 

[5] 2020 LSTM, WTA, RBS. 
Inputs: predicted velocity, 𝑆𝑂𝐶𝐵𝑇, 𝑆𝑂𝐶𝑈𝐶 ; 
Outputs: 𝑃𝑓𝑐, 𝑃𝐵𝑇 , 𝑃𝑈𝐶 , 𝑆𝑂𝐶𝐵𝑇, 𝑆𝑂𝐶𝑈𝐶 ; 

NYCC, ECE, US06_HWY, CAHVR, 
IM240, REP05, WVUCITY, HL07. 

[7] 2021 IDA-PBC, ANN. 
Inputs: 𝑆𝑂𝐶𝐵𝑇, 𝑆𝑂𝐶𝑈𝐶, FC 𝑛𝑓𝑐 ; 

Outputs: 𝑃𝑓𝑐, 𝑃𝐵𝑇 , 𝑃𝑈𝐶 ; 
RDCT 

[8] 2021 FCS, GA, ANN. 
Inputs:𝑃𝐿𝑜𝑎𝑑, 𝑆𝑂𝐶𝐵𝑇 𝑆𝑂𝐻𝑓𝑐 ; 

Outputs: 𝑃𝑓𝑐 
HWFET, NEDC, UDDS 

[9] 2023 DNN, PSOC. 
Inputs: 𝑣 𝑆𝑂𝐶𝐵𝑇, 𝑆𝑂𝐶𝑈𝐶; 

Outputs: 𝑃𝑓𝑐, 𝑃𝐵𝑇 , 𝑃𝑈𝐶  
MCPD, ANL  

[10] 2023 FCS, GA, K-means. 
Inputs: 𝑃 𝑆𝑂𝐶𝐵𝑇, 𝑆𝑂𝐶𝑈𝐶; 
Outputs: 𝑃𝑓𝑐. 

NYCC, ECECOL, UDDS, HWY 

This work 2024 

LSTM, WDA. 

Outlier removals: Grubbs, 

Mahalanobisb, Euclidean, minkowski; 

Median filtering; 
Min-max scaling. 

Inputs: 𝑃𝑚 , 𝑃𝑖𝑛, 𝑃𝑓𝑐, 𝑛𝑓𝑐, 𝑣, 𝑉𝑑𝑐, 

𝑆𝑂𝐶𝑈𝐶, 𝑆𝑂𝐶𝐵𝑇; 

Outputs: 𝑃𝐵𝑇 , 𝑃𝑈𝐶 , 𝑃𝑙𝑜𝑎𝑑, 𝐼𝑓𝑐𝑐𝑜𝑛𝑣
, 𝐼𝐵𝑇𝑐𝑜𝑛𝑣

 

UDDS, NYCC, LA92, EUDCL, 

WLTC 



580 Physics-based and representation learning for energy management 2 

 

 

The strategy reduces equivalent hydrogen consumption, 

enhancing fuel economy. The driving cycle clustering is 

based on the K-means method, utilizing the NYCC, 

ECECOL, UDDS, and HWY datasets.  

1.2 RESEARCH GAPS 

The literature review reveals data complexities and pattern 

variations in patterns within this field, suggesting potential 

research gaps. 

Handling complexity and dynamics, investigating methods 

to enhance model adaptability to dynamic conditions, 

including vehicle changes and external performance factors, 

by developing algorithms that adjust to data variations. 

Preprocessing, exploring advanced preprocessing methods 

beyond basic techniques like normalization, to improve 

learning model performance. 

The evaluation utilizes comprehensive metrics to assess the 

accuracy and modeling ability, leveraging physics-based 

knowledge. 

Addressing these gaps could contribute to the 

enhancement of EM in FCHEVs, offering valuable insights 

for researchers and practitioners.  

1.3 KEY CONTRIBUTIONS AND OUTLINES 

This work focuses on data preprocessing and advanced deep 

learning techniques as key strategies to address FCHEV 

complexities in EM. The main contributions are outlined below: 

Data Preprocessing: A structured algorithmic pipeline is 

implemented to reduce complexity and enhance data quality 

through filtration, scaling, and outlier removal. This ensures 

that models are trained on high-relevance features, 

improving predictive accuracy and overall performance. 

Deep Learning Framework: The integration of LSTM 

provides a powerful mechanism for capturing temporal 

dependencies. Its multi-layered architecture effectively 

identifies complex sequential patterns, making it well-suited 

for modeling dynamic EM optimization and accurately 

representing real-world driving scenarios. 

Multi-Input and Multi-Output Learning: unlike previous 

studies, this work employs a multi-input, multi-output learning 

approach, as shown in Table 1. By incorporating a more 

extensive set of inputs and outputs, the model gains an 

enhanced ability to decode intricate relationships, significantly 

improving predictive performance and robustness. 

This paper is structured into five sections: Section 2 details 

dataset generation, including driving cycles, physics-based 

models, and preprocessing techniques. Section 3 presents the 

deep learning methodologies used. Section 4 discusses the 

experimental setup, execution, and results, highlighting 

insights into EM optimization. Finally, section 5 summarizes 

key findings, implications, and future research directions. 

2. MATERIALS 

This section discusses the physics-based modeling process 

of FCHEVs, with an emphasis on dataset generation. It 

describes inputs and outputs for training the LSTM model 

and highlights data processing methods.  

2.1 SYSTEM DESCRIPTION 

In [11], a meticulously designed hybrid emergency power 

system supports aircraft during emergency landings, 

including a 12.5 kW liquid-cooled proton exchange 

membrane fuel cell system, enhanced with battery and 

supercapacitor modules for better energy storage and 

management. The system features essential auxiliaries, a 

controller for steady power, a battery management system 

for optimizing performance and safety, and supercapacitor 

modules for rapid energy discharge. Specialized DC/DC 

converters manage power flow. An inverter converts DC to 

AC power, and programmable loads simulate various 

electrical demands. The system is monitored and controlled 

via sensors and signal conditioning units, providing real-time 

data acquisition and stability, offering a practical framework 

for studying FCHEV. The physics-based model focuses on 

proton exchange membrane cells suitable for automotive 

applications. Implemented in MATLAB/Simulink, the 

model simplifies by neglecting reactant flow dynamics and 

calculating voltage by considering various losses. The 

model's accuracy is confirmed through comparisons with 

actual fuel cell output voltages, showing a low error margin. 

2.2 DATA GENERATION 

This study uses a systematic approach to generate a 

comprehensive database for representation learning. Various 

driving cycles (UDDS, NYCC, LA92, EUDCL, WLTC) are 

collected to cover real-world scenarios (Fig. 1). These cycles 

precisely simulate common commuter behavior, traffic 

conditions, and peak power demand situations, testing the 

vehicle's EM system under high-load conditions. These 

individual cycles are then concatenated to form a singular, 

extensive database that captures the richness and variability 

inherent in different driving conditions. 

 

Fig.1 – Utilizing diverse driving cycles for comprehensive data generation.   

The dataset inputs depicted in Fig. 2(a) encompass motor 

power 𝑃𝑚, input power 𝑃𝑖𝑛, 𝑆𝑂𝐶𝐵𝑇, UC state of charge 

𝑆𝑂𝐶𝑈𝐶 , FC power 𝑃𝑓𝑐, hydrogen gas quantities 𝑛𝑓𝑐, vehicle 

speed 𝑣 DC-link voltage 𝑉𝑑𝑐, DC-link reference voltage 

𝑉𝑑𝑐𝑟𝑒𝑓
. The outputs depicted in Fig. 2(b) include, 𝑃𝐵𝑇, 𝑃𝑈𝐶 , 

𝑃𝑙𝑜𝑎𝑑 , FC converter current 𝐼𝑓𝑐𝑐𝑜𝑛𝑣
, and 𝐼𝐵𝑇𝑐𝑜𝑛𝑣

. By 

integrating diverse inputs and outputs, data generation 

methodology ensures a robust and representative dataset. 

Fig. 2(a, b) illustrates the complex interplay between 

components, showcasing the system's adaptive response and 

highlighting data drift issues. The dataset underscores 

challenges and opportunities in optimizing FCHEV for real-

world applications, emphasizing complexity and variability 

in hybrid systems. 
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Fig. 2 – Generated dataset features; (a, b) Inputs and outputs designed for the learning model. 

 

Fig. 3 – Data preprocessing results: a) inputs (extracted features); b) outputs.  

Table 2 

Parameters of data preprocessing. 

Method Parameters 

Data scaling Interval: [0,1]. 

Feature 

extraction 

Mean, standard deviation (std), Skewness, Kurtosis, 

Peak two Peak (P2P), Root Mean Squares (RMS), Crest 

Factor, Shape Factor, Impulse Factor, Margin Factor, 

Energy. 

Denoising Type of wavelet: symlets; 
Denoising method: Bayes method; 

Level of wavelet decomposition: 𝑙𝑜𝑔2𝑁; 

Outliers Method for detecting outliers: Grubbs statistics; 
Moving method: Moving average median; 

Operating dimension: 1; 

Minimum outlier count:10%. 

2.3 DATA PROCESSING 

Inspired by [12], this subsection employs a systematic 

four-layer approach to enhance driving cycles data for EM in 

FCHEV. The process includes scaling, feature extraction, 

denoising, and outlier removal. Scaling mitigates noise and 

normalizes data using moving average, median filtering, and 

min-max normalization. Feature extraction derives critical 

time and frequency domain features to distinguish 

operational states/patterns. Denoising uses a wavelet-based 

approach, specifically an empirical Bayesian method with a 

Cauchy prior, to refine signal quality and eliminate noise. 

Outlier removal incorporates statistical tests and distance 

measurements to identify and remove anomalies in the 

dynamic FCHEV environment. Table 2 summarizes key 

parameters of the employed algorithms, ensuring 

comprehensive and precise data processing. It is noteworthy 

to mention that preprocessing steps are also applied to 

outputs depicted in Fig. 2(b). Outlier instances and their 

associated ground truths are excluded in this process, 

enhancing overall data quality. The results in Fig. 3 

demonstrate marked smoothness and discernible patterns 

compared to the initial representation in Fig. 2(a, b), which 

had numerous outliers, noise, and randomness. This refined 

data contributes to the effectiveness of deep learning 

algorithms. 

3. METHODS 

LSTM is a type of deep recurrent neural network 

specifically designed to handle sequential data, where the 

concept of time is crucial. The hidden layer of LSTM 

includes three key gates: the input gate 𝑔𝑡
𝑖 ,, the output gate 

𝑔𝑡
𝑜, and the forget gate 𝑔𝑡

𝑓
, as shown in (1-4). These gates 

allow the network to effectively adapt and learn over time 

sequences. The hidden state ℎ𝑡 and cell state𝐶𝑡 are computed 

using (5-6), which take into account the inputs 𝑥𝑡, weights 

(𝑤𝑓, 𝑤𝑖 , 𝑤ℎ , 𝑤𝑐) and biases (𝑏𝑖, 𝑏𝑜 , 𝑏ℎ , 𝑏𝑐),. These 

components work together to capture and retain relevant 

information throughout the sequence. The output 𝑂𝑡, as 

defined in equation (7), is calculated by applying output 

weights 𝑤𝑜ℎ,, output biases 𝑏𝑜, and an activation function 𝑓. 

The activation function 𝑓 combines a sigmoid function and 

the hyperbolic tangent (tanh), introducing non-linearity and 

aiding in feature extraction, which is critical for the model's 

ability to learn complex patterns. 

 𝑔𝑡
𝑓 = 𝑓(𝑤𝑓 [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑓), (1) 

 𝑔𝑡
𝑖 = 𝑓(𝑤𝑖 [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑖), (2) 

 𝑔𝑡
𝑜 = 𝑓(𝑤𝑜 [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑜), (3) 

 ℎ𝑡 = 𝑓(𝑤ℎ [ℎ𝑡−1 + 𝑥𝑡] + 𝑏ℎ), (4) 

 Č𝑡 = tanh(𝑤𝑐 [ℎ𝑡−1 + 𝑥𝑡] + 𝑏𝑐), (5) 
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 Ct = 𝑔𝑡
𝑓𝐶𝑡−1 + 𝑔𝑡

𝑖Č𝑡−1, (6) 

 𝑂𝑡 = 𝑓( 𝑤𝑜ℎℎ𝑡  + 𝑏𝑜). (7) 

LSTM layer has been configured with specific parameters 

to optimize its performance in this study. The LSTM layer 

consists of 20 neurons, a configuration that allows for 

capturing temporal dependencies in the data effectively. 

Training of this network is conducted using the Adaptive 

Moment Estimation algorithm (i.e., Adam optimization), 

chosen for its efficiency in handling sparse gradients and 

adapting the learning rate during training. The training 

process is configured with a maximum of 150 epochs and a 

mini-batch size of 20, balancing the need for computational 

efficiency with the accuracy of gradient estimation. The 

initial learning rate is set to 0.01, a standard value for starting 

the training process, and it's adjusted as needed during 

training. A gradient threshold of 1 is applied to prevent the 

gradients from exploding, ensuring stable training progress. 

The 𝐿2 regularization parameter is set to 0.0001, introducing 

a small amount of regularization to avoid overfitting while 

maintaining the flexibility of the model. The network 

employs a 3-fold cross-validation technique, enhancing the 

reliability of its performance evaluation by splitting the 

dataset into three parts, using each in turn for validation 

while training on the remaining data. This approach ensures 

a comprehensive assessment of the model's generalization 

capabilities. Moreover, the training is conducted solely on a 

CPU, which, while potentially slower than GPU-based 

training, offers broader compatibility with different 

computational environments. Validation data is explicitly 

provided for assessing the model's performance during 

training, ensuring that the learning process is guided by not 

just training data performance but also by how well the 

model generalizes to unseen data. Notably, the order of the 

data is preserved during training, which could be crucial for 

time-series data where temporal sequence integrity is 

important. Streamlining the output for efficiency or 

integration purposes. Overall, this LSTM neural network 

architecture, with its specific configuration and the use of 3-

fold cross-validation, is tailored to capture complex temporal 

patterns in data while ensuring robustness and generalization 

capabilities, making it well-suited for tasks requiring a 

nuanced understanding of time-series data. 

4. RESULTS AND DISCUSSION 

In this work, in addition to the single LSTM layer neural 

network, the study also involves a comparative analysis with 

several other neural network architectures to evaluate their 

respective performances. These architectures include a Gated 

Recurrent Unit (GRU) network, a Bidirectional LSTM 

(BiLSTM) network, and a Single Hidden Layer Feedforward 

Network (SLFN) [13] as per the contribution “Integration of 

conventional machine learning methods” in section 1.3. GRU 

combines the properties of GRUs and LSTMs, aiming to 

leverage the strengths of both in capturing temporal 

dependencies, potentially offering improved efficiency in 

learning long-range dependencies. The BiLSTM, on the other 

hand, extends the traditional LSTM by processing the data in 

both forward and backward directions, thus providing a more 

comprehensive understanding of the context in sequence data. 

This bidirectional approach is particularly beneficial for tasks 

where the context from both past and future data points is 

crucial for accurate predictions [13]. Lastly, the SLFN, with 

its simpler architecture consisting of a single hidden layer, 

serves as a baseline for comparison. While less complex and 

possibly less powerful in capturing complex patterns 

compared to LSTM-based models, the SLFN's performance in 

this study provides valuable insights into the necessity and 

efficacy of more complex recurrent neural networks for the 

specific application at hand. This comparative study aims to 

assess the trade-offs between these different architectures in 

terms of learning capabilities, computational efficiency, and 

overall effectiveness in the given context. 

In the comparative analysis, a comprehensive set of metrics 

is utilized to evaluate and contrast the performance of each 

model. These metrics include Root Mean Square Error 

(RMSE), Mean Squared Error (MSE), Mean Absolute Error 

(MAE), and the coefficient of determination, denoted as R². 

RMSE provides a measure of the differences between values 

predicted by the models and the actual values, offering insights 

into the models' prediction accuracy. MSE, similar to RMSE, 

quantifies the average squared differences between the 

predicted and actual values, while MAE measures the average 

magnitude of errors in a set of predictions, without considering 

their direction. R², on the flip side, signifies the proportion of the 

variance in the dependent variable that can be predicted from 

the independent variables. It serves as a measure of how well 

the model replicates the observed outcomes. To further enhance 

the robustness of the comparison, the standard deviation of 

RMSE, MSE, and MAE across each fold of the 3-fold cross-

validation process (σ𝑚) was calculated. This approach offers 

valuable insights into the models' consistency and reliability 

across various data subsets. Furthermore, the standard deviation 

of 𝑅² for each of the 3-fold models (𝜎𝑅) was calculated to 

highlight the variability in the models' capacity to explain data 

variance across folds. Including these standard deviations 

enhances the analysis, providing a more thorough 

understanding of the models' performance stability and 

robustness, leading to a more detailed and nuanced comparison. 
Table 3 

3-fold cross-validation results for the LSTM network. 

Folds RMSE MSE MAE R2 

1 0.1086 0.0117 0.0801 0.7679 

2 0.1117 0.0124 0.0805 0.7639 

3 0.1089 0.0118 0.08275 0.7816 

μ 0.1097 0.01205 0.0811 0.7711 

σ 0.0435 0.0435 0.0435 0.0092 

Table 4 

Comparison results. 

Methods RMSE MSE MAE R2 

LSTM 0.1097 0.01205 0.0811 0.7711 

Bi-LSTM 0.1123 0.0127 0.0833 0.7560 

GRU 0.1261 0.0160 0.0950 0.6968 

SLFN 0.1740 0.0307 0.1349 0.4197 

This thorough evaluation strategy allows for a well-

rounded assessment of each architecture's predictive 

capabilities and effectiveness in the context of the study. 

Table 3 introduces first 3-fold cross validations results 

related to LSTM network. The results show a consistent 

performance of LSTM model across the folds, with relatively 

close values for RMSE, MSE, and MAE, indicating stability 

in the model's error metrics. The R² values, which measure 

the proportion of variance explained by the model, are also 

consistent across the folds, with a mean value of 𝜇 = 0.77 
suggesting a good fit to the data. Interestingly, the standard 
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deviation for RMSE, MSE, and MAE is the same 

0.43 x 10−1 , indicating uniform variability in these error 

metrics across the folds. The standard deviation for R² is 

relatively low 0.9 x 10−2, suggesting less variability in the 

model's explanatory power across different subsets of the 

data. This uniformity in the standard deviations of RMSE, 

MSE, and MAE is somewhat unusual and might warrant 

further investigation to understand the underlying factors 

contributing to this pattern. 

Table 4 demonstrates the averaged results of a 3-fold cross-

validation related to the compared models. In the comparative 

analysis of neural network models, the LSTM demonstrated 

superior performance with the lowest RMSE (0.1098), MSE 

(0.0121), and MAE (0.0812), and the highest R² value (0.7712), 

indicating its high accuracy and predictive capability. The 

BiLSTM followed closely, showing slightly higher errors 

(RMSE: 0.1123, MSE: 0.0128, MAE: 0.0833) and a marginally 

lower R² (0.7560), still maintaining commendable performance. 

GRU performance dropped notably, with higher error rates 

(RMSE: 0.1261, MSE: 0.0160, MAE: 0.0950) and a 

significantly reduced ability to predict variance in the data, as 

reflected by its R² value (0.6968). The SLFN lagged behind the 

others, registering the highest errors (RMSE: 0.1741, MSE: 

0.0307, MAE: 0.1349) and the lowest R² (0.4198), indicating its 

relatively poorer fit and predictive accuracy. This table 

underscores LSTM's effectiveness in handling the dataset's 

complexities, with BiLSTM also showing good potential, while 

GRU and especially SLFN exhibited lower performance metrics. 

Finally, the LSTM performance, as indicated by the provided 

loss values in Fig. 4, shows a positive trend. In the training phase 

depicted by Fig. 4(a), the loss values show a notable downward 

trend. For instance, the initial losses in the first fold start at 0.073 

and decrease steadily to 0.0040 by the final iteration. This 

significant reduction reflects the model's capacity to learn from 

the training data effectively. Similarly, in the second and third 

folds, we observe a decrease from initial values of 0.0295 and 

0.0319 to 0.0037 and 0.0035, respectively. These patterns are 

indicative of consistent learning across all folds. The testing 

phase, as depicted in Fig. 4(b), evaluates the model's efficacy on 

previously unseen data. This evaluation also indicates a 

reduction in loss values, though this decrease is less pronounced 

compared to that observed during the training phase. For 

example, in the first fold, the loss decreases from an initial value 

of 0.0423 to 0.0060 towards the end. In the second and third 

folds, the initial losses of 0.09643 and 0.0714 reduce to 0.00660 

and 0.0060, respectively, by the end of the process. While these 

decreases are encouraging, the generally higher loss values in 

testing compared to training are typical and highlight the 

challenges models face when generalizing to new data. The 

consistency in the decreasing trend of loss values across all folds 

in both training and testing phases is a positive indicator. 

However, the fact that the testing losses do not converge as 

closely to the training losses as one might hope could suggest 

areas for model improvement, possibly through more 

sophisticated regularization techniques or additional training 
data. Overall, the model demonstrates effective learning and a 

reasonable degree of generalization. The gradual reduction in 

loss values, both in training and testing, underscores the model's 

ability to adapt to the data it is trained on and its competence in 

handling new, unseen data. Overall, LSTM's performance in 

this study demonstrates its robustness in handling complex data 

sequences. Its ability to capture temporal dependencies is 

evident from its superior metrics, particularly its low error rates 

(RMSE, MSE, MAE) and high R² value, indicating high 

predictive accuracy and model fit. 

 

Fig. 4 – (a, b) Loss function behaviors during training and testing, respectively. 

The results are consistent across cross-validation and 

suggest that LSTM is not prone to overfitting, maintaining 

its performance across different data subsets. This stability is 

a crucial aspect of reliable predictive modeling. Compared to 

other architectures, LSTM stands out for its ability to 

effectively process and learn from data. It underscores its 

suitability for complex sequence modeling tasks, making it a 

valuable tool. However, while reported error values provide 

a broad assessment of model performance, it is important to 

analyze error behavior under different operational scenarios. 

A more detailed investigation into specific conditions, such 

as high-speed driving, varying load conditions, and transient 

acceleration phases, could reveal potential weaknesses in 

prediction capability.  

Additionally, while cross-validation ensures consistency 

across different data subsets, it does not fully capture how 

generalization applies to entirely new driving cycles that were 

not included in the training. Future work should explore testing 

the model on unseen driving conditions to assess its adaptability 

to novel scenarios, ensuring robustness beyond the evaluated 

dataset. For instance, evaluations on diverse real-world cycles, 

including aggressive or heavy conditions, could provide deeper 

insights into potential limitations. Extending this comparison to 

state-of-the-art methods (refer to Table 1), this study is 

distinguished by considering a significantly larger number of 

outputs (five), unlike most others, except for the method 

outlined in references [7], [9], which considered three outputs. 

This ability to handle multiple outputs is a challenge and a 
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testament to sophistication and adaptability. The ability to 

process and predict multiple outcomes offers an understanding 

of data dynamics, which is beneficial in complex predictive 

scenarios. This aspect further demonstrates LSTM's versatility 

and its edge over traditional methods that are typically limited 

in the scope of output handling [14]. 

4. CONCLUSION 

The paper presents an approach to EM optimization in 

FCHEV through representation learning. It begins with a 

robust data generation methodology, creating a 

representative dataset capturing the dynamic nature of 

FCHEVs under various driving conditions. Afterward, 

systematic data processing is employed to refine driving 

cycle data, tackling challenges in FCHEV energy 

management. A significant part of the study is the use of 

LSTM. Their careful architecture and a 3-fold cross-

validation technique effectively capture complex temporal 

patterns in data. The paper also includes a comparative 

analysis with other neural network architectures, 

underscoring the LSTM model's superior performance in 

predictive accuracy. Lower RMSE, MSE, and MAE values 

and a higher R² value evidence this. The BiLSTM also shows 

commendable performance, while the GRU and SLFN lag 

behind, highlighting the importance of sophisticated 

recurrent neural networks for this specific application. An 

essential aspect of the study is the consistency in the standard 

deviations across the folds for LSTM metrics, which adds to 

the model's stability and reliability. Additionally, LSTM 

handles a significantly larger number of outputs, showcasing 

the model's advanced adaptability and sophistication. In 

conclusion, this research provides valuable insights into 

using LSTM networks for FCHEV energy optimization, 

particularly in handling complex datasets, and paves the way 

for further advancements in representation learning. 
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