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PHYSICS-INFORMED REPRESENTATION LEARNING FOR HYBRID
ELECTRIC VEHICLE ENERGY MANAGEMENT
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Machine learning.

Integrating physics-based and learning systems enhances fuel cell hybrid electric vehicles (FCHEVs) for better performance control and
efficient power source operation. Balancing this diverse mix is challenging, given the uncertainties and fluctuations in complex physics-
based modeling. In this framework, our work has a dual purpose. Firstly, precise physics-based modeling enables the effective generation
of data. This helps gather diverse data resembling real-world scenarios, aiding in drawing reliable conclusions. Several known driving
cycles were utilized to generate sufficient data for the experiments and findings presented in this work. Secondly, the collected data
undergoes an advanced representation learning process with adaptive functions, enhancing the interaction between learning models and
the FCHEYV system's physical phenomena. The effectiveness of the suggested approach is validated through a comprehensive evaluation
of developed algorithms using various visual and numerical metrics. In a comparative analysis, the results illustrate the efficacy of the
methodology in addressing energy management (EM) challenges in fuel cell hybrid electric vehicles (FCHEVs).

1. INTRODUCTION

Efficient EM in FCHEVs is essential for sustainable
operation, improving vehicle efficiency, extending range,
and optimizing power. Modeling plays a vital role in the
design of FCHEVs, enabling the evaluation of performance,
efficiency, and reliability, and ensuring sustainable
transportation [1,2]. FCHEVs gain from physics-based
modeling, though their dynamic complexity challenges
traditional mathematical models and optimization. Capturing
nonlinear component behavior with uncertainties, such as
FC, batteries (BT), and ultracapacitors (UC) is challenging.
Integrating machine learning (ML) significantly enhances
EM in FCHEV by analyzing real-world data, improving
predictions, and understanding vehicle performance across
diverse scenarios [3,4]. Integrating the two enhances EM by
accounting for electrochemical reactions, temperature,
humidity, and energy source characteristics [3]. This section
reviews recent literature, identifies research gaps, highlights
key contributions, and provides the work's structure.

1.1 RELATED WORKS ANALYSIS

This section reviews EM in FCHEVs using ML methods,
summarized in Table 1. For instance, in [5], the authors used
a predictive learning system for FCHEVs, forecasting velocity
(v), power (P), and state of charge (SOCgr). This optimizes
performance and reduces power fluctuations through the use
of long-short term memory (LSTM), a wavelet transform
algorithm (WTA), and a rule-based strategy (RBS) [6]. The

dataset is derived from 8 standard driving cycles, namely, New
York City Cycle (NYCC), Economic Commission for Europe
(ECE), Highway Cycle (US06-HWY), California Highway
Vehicle Route (CAHVR), United States Emissions Integrated
Modified 240 (IM240), Representative Test Procedure 2005
(REPO05), West Virginia University City Cycle (WVUCITY),
and high-temperature (HLO7). In [7], an Interconnection and
Damping Assignment Passivity-Based Control (IDA-PBC) is
introduced, considering hydrogen levels and SOCgr under
various conditions. An Artificial Neural Network (ANN)
allocates P demand from different sources to enable
constrained power dispatching. Real Driving Cycles of
Tramway (RDCT) are used to evaluate the proposed system
(see [7], Table 1). In [8], the authors proposed a Fuzzy Control
Strategy (FCS) with Genetic Algorithm (GA) and ANN for
FCHEVs health monitoring, considering driving cycles of
diverse conditions: Highway Fuel Economy Test Cycle
(HWFET), New European Driving Cycle (NEDC), and Urban
Dynamometer Driving Schedule (UDDS). In addition, P; g4,
SO0Cgr, and state of health (SOH,) are used as inputs and Py,
outputs of the learning system.

A Deep Neural Network (DNN) control framework is
presented in [9] for EM in FCHEVs. It combines a pseudo-
spectral optimal controller (PSOC) and a DNN predictive
controller. Two datasets are used: the Argonne National
Laboratory (ANL) dataset and the Mobile Century project
dataset (MCPD) to train two DNNs. In [10], the authors
proposed an EM with Fuzzy Logic (FLC) and GA.

Table 1
Cutting-Edge EM-based machine learning in FCHEVs.

Ref. Year  Methods Learning features Driving cycles
Inputs: predicted velocity, SOCgr, SOCyc;  NYCC, ECE, US06 HWY, CAHVR,
3] 2020 LSTM, WTA, RBS. Outputs: Pr,, Pyr., Pyc, SOCyr, SOC,c;  IM240, REPOS, WVUCITY, HLO7.
Inputs: SOCgr, SOCyc, FC nge;
(7] 2021  TDA-PBC, ANN. Outputs: Py, Par, Pyc; RDCT
Inputs: Py, p4, SOCgr SOH;;
8] 2021 FCS, GA, ANN. NPT Froad ©ULer 2 e HWFET, NEDC, UDDS
Outputs: Py,
Inputs: v SOCgr, SOCyc;
9] 2023  DNN, PSOC. Outputs: Py, Pyr. Pyc MCPD, ANL
[10] 2023 FCS, GA, K-means. Inputs: P $0Cpr, SOCyc; NYCC, ECECOL, UDDS, HWY
Outputs: Py,.
LSTM, WDA.
Outlier removals: Grubbs, Inputs: Py, , Pin, Pre, Npes ¥, Ve
This work 2024  Mahalanobisb, Euclidean, minkowski; S0Cy¢, SOCyy; UDDS, NYCC, LA92, EUDCL,

Median filtering;
Min-max scaling.

WLTC
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The strategy reduces equivalent hydrogen consumption,
enhancing fuel economy. The driving cycle clustering is
based on the K-means method, utilizing the NYCC,
ECECOL, UDDS, and HWY datasets.

1.2 RESEARCH GAPS

The literature review reveals data complexities and pattern
variations in patterns within this field, suggesting potential
research gaps.

Handling complexity and dynamics, investigating methods
to enhance model adaptability to dynamic conditions,
including vehicle changes and external performance factors,
by developing algorithms that adjust to data variations.

Preprocessing, exploring advanced preprocessing methods
beyond basic techniques like normalization, to improve
learning model performance.

The evaluation utilizes comprehensive metrics to assess the
accuracy and modeling ability, leveraging physics-based
knowledge.

Addressing these gaps could contribute to the
enhancement of EM in FCHEVs, offering valuable insights
for researchers and practitioners.

1.3 KEY CONTRIBUTIONS AND OUTLINES

This work focuses on data preprocessing and advanced deep
learning techniques as key strategies to address FCHEV
complexities in EM. The main contributions are outlined below:

Data Preprocessing: A structured algorithmic pipeline is
implemented to reduce complexity and enhance data quality
through filtration, scaling, and outlier removal. This ensures
that models are trained on high-relevance features,
improving predictive accuracy and overall performance.

Deep Learning Framework: The integration of LSTM
provides a powerful mechanism for capturing temporal
dependencies. Its multi-layered architecture effectively
identifies complex sequential patterns, making it well-suited
for modeling dynamic EM optimization and accurately
representing real-world driving scenarios.

Multi-Input and Multi-Output Learning: unlike previous
studies, this work employs a multi-input, multi-output learning
approach, as shown in Table 1. By incorporating a more
extensive set of inputs and outputs, the model gains an
enhanced ability to decode intricate relationships, significantly
improving predictive performance and robustness.

This paper is structured into five sections: Section 2 details
dataset generation, including driving cycles, physics-based
models, and preprocessing techniques. Section 3 presents the
deep learning methodologies used. Section 4 discusses the
experimental setup, execution, and results, highlighting
insights into EM optimization. Finally, section 5 summarizes
key findings, implications, and future research directions.

2. MATERIALS

This section discusses the physics-based modeling process
of FCHEVs, with an emphasis on dataset generation. It
describes inputs and outputs for training the LSTM model
and highlights data processing methods.

2.1 SYSTEM DESCRIPTION

In [11], a meticulously designed hybrid emergency power
system supports aircraft during emergency landings,
including a 12.5 kW liquid-cooled proton exchange

membrane fuel cell system, enhanced with battery and
supercapacitor modules for better energy storage and
management. The system features essential auxiliaries, a
controller for steady power, a battery management system
for optimizing performance and safety, and supercapacitor
modules for rapid energy discharge. Specialized DC/DC
converters manage power flow. An inverter converts DC to
AC power, and programmable loads simulate various
electrical demands. The system is monitored and controlled
via sensors and signal conditioning units, providing real-time
data acquisition and stability, offering a practical framework
for studying FCHEV. The physics-based model focuses on
proton exchange membrane cells suitable for automotive
applications. Implemented in MATLAB/Simulink, the
model simplifies by neglecting reactant flow dynamics and
calculating voltage by considering various losses. The
model's accuracy is confirmed through comparisons with
actual fuel cell output voltages, showing a low error margin.

2.2 DATA GENERATION

This study uses a systematic approach to generate a
comprehensive database for representation learning. Various
driving cycles (UDDS, NYCC, LA92, EUDCL, WLTC) are
collected to cover real-world scenarios (Fig. 1). These cycles
precisely simulate common commuter behavior, traffic
conditions, and peak power demand situations, testing the
vehicle's EM system under high-load conditions. These
individual cycles are then concatenated to form a singular,
extensive database that captures the richness and variability
inherent in different driving conditions.
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Fig.1 — Utilizing diverse driving cycles for comprehensive data generation.

The dataset inputs depicted in Fig. 2(a) encompass motor
power P, input power P;,, SOCgzr, UC state of charge
S0Cyc, FC power Py, hydrogen gas quantities ns., vehicle
speed v DC-link voltage V;., DC-link reference voltage
Vac,, ;- The outputs depicted in Fig. 2(b) include, Pgr, Pyc,

Pioaq, FC converter current Ig. ., and Igr, . By
integrating diverse inputs and outputs, data generation
methodology ensures a robust and representative dataset.
Fig. 2(a, b) illustrates the complex interplay between
components, showcasing the system's adaptive response and
highlighting data drift issues. The dataset underscores
challenges and opportunities in optimizing FCHEV for real-
world applications, emphasizing complexity and variability
in hybrid systems.
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Fig. 2 — Generated dataset features; (a, b) Inputs and outputs designed for the learning model.
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Fig. 3 — Data preprocessing results: a) inputs (extracted features); b) outputs.

Table 2
Parameters of data preprocessing.
Method Parameters
Data scaling  Interval: [0,1].
Feature Mean, standard deviation (std), Skewness, Kurtosis,
extraction Peak two Peak (P2P), Root Mean Squares (RMS), Crest
Factor, Shape Factor, Impulse Factor, Margin Factor,
Energy.
Denoising Type of wavelet: symlets;
Denoising method: Bayes method;
Level of wavelet decomposition: log,N;
Outliers Method for detecting outliers: Grubbs statistics;

Moving method: Moving average median;
Operating dimension: 1;
Minimum outlier count:10%.

2.3 DATA PROCESSING

Inspired by [12], this subsection employs a systematic
four-layer approach to enhance driving cycles data for EM in
FCHEV. The process includes scaling, feature extraction,
denoising, and outlier removal. Scaling mitigates noise and
normalizes data using moving average, median filtering, and
min-max normalization. Feature extraction derives critical
time and frequency domain features to distinguish
operational states/patterns. Denoising uses a wavelet-based
approach, specifically an empirical Bayesian method with a
Cauchy prior, to refine signal quality and eliminate noise.
Outlier removal incorporates statistical tests and distance
measurements to identify and remove anomalies in the
dynamic FCHEV environment. Table 2 summarizes key
parameters of the employed algorithms, ensuring
comprehensive and precise data processing. It is noteworthy
to mention that preprocessing steps are also applied to
outputs depicted in Fig. 2(b). Outlier instances and their
associated ground truths are excluded in this process,

enhancing overall data quality. The results in Fig. 3
demonstrate marked smoothness and discernible patterns
compared to the initial representation in Fig. 2(a, b), which
had numerous outliers, noise, and randomness. This refined
data contributes to the effectiveness of deep learning
algorithms.

3. METHODS

LSTM is a type of deep recurrent neural network
specifically designed to handle sequential data, where the
concept of time is crucial. The hidden layer of LSTM
includes three key gates: the input gate gi,, the output gate

gi, and the forget gate g[ , as shown in (1-4). These gates
allow the network to effectively adapt and learn over time
sequences. The hidden state h; and cell stateC; are computed
using (5-6), which take into account the inputs x,, weights
(wg,wi,wp,w,) and  biases  (b;, by, by, be),.  These
components work together to capture and retain relevant
information throughout the sequence. The output O, as
defined in equation (7), is calculated by applying output
weights wy,, output biases b,,, and an activation function f.
The activation function f combines a sigmoid function and
the hyperbolic tangent (tanh), introducing non-linearity and
aiding in feature extraction, which is critical for the model's
ability to learn complex patterns.

9L = f(wy[heey + x.] + by), 1)
9t = f(W; [he—y + xc] + by), 2
97 = fw [he—1 + x¢] + by), 3)
he = f(wp [he—1 + x¢] + bp), “4)
C¢ = tanh(w, [he—1 + %] + be), )
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Ce= g[Ct—l + géct—ls (6)
Ot = f( Wohht + bo)- (7)

LSTM layer has been configured with specific parameters
to optimize its performance in this study. The LSTM layer
consists of 20 neurons, a configuration that allows for
capturing temporal dependencies in the data effectively.
Training of this network is conducted using the Adaptive
Moment Estimation algorithm (i.e., Adam optimization),
chosen for its efficiency in handling sparse gradients and
adapting the learning rate during training. The training
process is configured with a maximum of 150 epochs and a
mini-batch size of 20, balancing the need for computational
efficiency with the accuracy of gradient estimation. The
initial learning rate is set to 0.01, a standard value for starting
the training process, and it's adjusted as needed during
training. A gradient threshold of 1 is applied to prevent the
gradients from exploding, ensuring stable training progress.
The L, regularization parameter is set to 0.0001, introducing
a small amount of regularization to avoid overfitting while
maintaining the flexibility of the model. The network
employs a 3-fold cross-validation technique, enhancing the
reliability of its performance evaluation by splitting the
dataset into three parts, using each in turn for validation
while training on the remaining data. This approach ensures
a comprehensive assessment of the model's generalization
capabilities. Moreover, the training is conducted solely on a
CPU, which, while potentially slower than GPU-based
training, offers broader compatibility with different
computational environments. Validation data is explicitly
provided for assessing the model's performance during
training, ensuring that the learning process is guided by not
just training data performance but also by how well the
model generalizes to unseen data. Notably, the order of the
data is preserved during training, which could be crucial for
time-series data where temporal sequence integrity is
important. Streamlining the output for efficiency or
integration purposes. Overall, this LSTM neural network
architecture, with its specific configuration and the use of 3-
fold cross-validation, is tailored to capture complex temporal
patterns in data while ensuring robustness and generalization
capabilities, making it well-suited for tasks requiring a
nuanced understanding of time-series data.

4. RESULTS AND DISCUSSION

In this work, in addition to the single LSTM layer neural
network, the study also involves a comparative analysis with
several other neural network architectures to evaluate their
respective performances. These architectures include a Gated
Recurrent Unit (GRU) network, a Bidirectional LSTM
(BiLSTM) network, and a Single Hidden Layer Feedforward
Network (SLFN) [13] as per the contribution “Integration of
conventional machine learning methods” in section 1.3. GRU
combines the properties of GRUs and LSTMs, aiming to
leverage the strengths of both in capturing temporal
dependencies, potentially offering improved efficiency in
learning long-range dependencies. The BiLSTM, on the other
hand, extends the traditional LSTM by processing the data in
both forward and backward directions, thus providing a more
comprehensive understanding of the context in sequence data.
This bidirectional approach is particularly beneficial for tasks
where the context from both past and future data points is

crucial for accurate predictions [13]. Lastly, the SLFN, with
its simpler architecture consisting of a single hidden layer,
serves as a baseline for comparison. While less complex and
possibly less powerful in capturing complex patterns
compared to LSTM-based models, the SLFN's performance in
this study provides valuable insights into the necessity and
efficacy of more complex recurrent neural networks for the
specific application at hand. This comparative study aims to
assess the trade-offs between these different architectures in
terms of learning capabilities, computational efficiency, and
overall effectiveness in the given context.

In the comparative analysis, a comprehensive set of metrics
is utilized to evaluate and contrast the performance of each
model. These metrics include Root Mean Square Error
(RMSE), Mean Squared Error (MSE), Mean Absolute Error
(MAE), and the coefficient of determination, denoted as R2.
RMSE provides a measure of the differences between values
predicted by the models and the actual values, offering insights
into the models' prediction accuracy. MSE, similar to RMSE,
quantifies the average squared differences between the
predicted and actual values, while MAE measures the average
magnitude of errors in a set of predictions, without considering
their direction. R?, on the flip side, signifies the proportion of the
variance in the dependent variable that can be predicted from
the independent variables. It serves as a measure of how well
the model replicates the observed outcomes. To further enhance
the robustness of the comparison, the standard deviation of
RMSE, MSE, and MAE across each fold of the 3-fold cross-
validation process (0,,) was calculated. This approach offers
valuable insights into the models' consistency and reliability
across various data subsets. Furthermore, the standard deviation
of R? for each of the 3-fold models (o) was calculated to
highlight the variability in the models' capacity to explain data
variance across folds. Including these standard deviations
enhances the analysis, providing a more thorough
understanding of the models' performance stability and
robustness, leading to a more detailed and nuanced comparison.

Table 3
3-fold cross-validation results for the LSTM network.
Folds RMSE MSE MAE R?
1 0.1086 0.0117 0.0801 0.7679
2 0.1117 0.0124 0.0805 0.7639
3 0.1089 0.0118 0.08275 0.7816
1] 0.1097 0.01205 0.0811 0.7711
[ 0.0435 0.0435 0.0435 0.0092
Table 4
Comparison results.
Methods RMSE MSE MAE R?
LSTM 0.1097 0.01205 0.0811 0.7711
Bi-LSTM 0.1123 0.0127 0.0833 0.7560
GRU 0.1261 0.0160 0.0950 0.6968
SLFN 0.1740 0.0307 0.1349 0.4197

This thorough evaluation strategy allows for a well-
rounded assessment of each architecture's predictive
capabilities and effectiveness in the context of the study.

Table 3 introduces first 3-fold cross validations results
related to LSTM network. The results show a consistent
performance of LSTM model across the folds, with relatively
close values for RMSE, MSE, and MAE, indicating stability
in the model's error metrics. The R? values, which measure
the proportion of variance explained by the model, are also
consistent across the folds, with a mean value of u = 0.77
suggesting a good fit to the data. Interestingly, the standard
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deviation for RMSE, MSE, and MAE is the same
0.43 x 1071, indicating uniform variability in these error
metrics across the folds. The standard deviation for R? is
relatively low 0.9 x 1072, suggesting less variability in the
model's explanatory power across different subsets of the
data. This uniformity in the standard deviations of RMSE,
MSE, and MAE is somewhat unusual and might warrant
further investigation to understand the underlying factors
contributing to this pattern.

Table 4 demonstrates the averaged results of a 3-fold cross-
validation related to the compared models. In the comparative
analysis of neural network models, the LSTM demonstrated
superior performance with the lowest RMSE (0.1098), MSE
(0.0121), and MAE (0.0812), and the highest R? value (0.7712),
indicating its high accuracy and predictive capability. The
BiLSTM followed closely, showing slightly higher errors
(RMSE: 0.1123, MSE: 0.0128, MAE: 0.0833) and a marginally
lower R? (0.7560), still maintaining commendable performance.
GRU performance dropped notably, with higher error rates
(RMSE: 0.1261, MSE: 0.0160, MAE: 0.0950) and a
significantly reduced ability to predict variance in the data, as
reflected by its R? value (0.6968). The SLFN lagged behind the
others, registering the highest errors (RMSE: 0.1741, MSE:
0.0307, MAE: 0.1349) and the lowest R? (0.4198), indicating its
relatively poorer fit and predictive accuracy. This table
underscores LSTM's effectiveness in handling the dataset's
complexities, with BILSTM also showing good potential, while
GRU and especially SLFN exhibited lower performance metrics.

Finally, the LSTM performance, as indicated by the provided
loss values in Fig. 4, shows a positive trend. In the training phase
depicted by Fig. 4(a), the loss values show a notable downward
trend. For instance, the initial losses in the first fold start at 0.073

0.08

Training

0.07 Testing

0.06

0.05

Loss
¢ o
o
s
P

Epochs
(a)

and decrease steadily to 0.0040 by the final iteration. This
significant reduction reflects the model's capacity to learn from
the training data effectively. Similarly, in the second and third
folds, we observe a decrease from initial values of 0.0295 and
0.0319 to 0.0037 and 0.0035, respectively. These patterns are
indicative of consistent learning across all folds. The testing
phase, as depicted in Fig. 4(b), evaluates the model's efficacy on
previously unseen data. This evaluation also indicates a
reduction in loss values, though this decrease is less pronounced
compared to that observed during the training phase. For
example, in the first fold, the loss decreases from an initial value
of 0.0423 to 0.0060 towards the end. In the second and third
folds, the initial losses of 0.09643 and 0.0714 reduce to 0.00660
and 0.0060, respectively, by the end of the process. While these
decreases are encouraging, the generally higher loss values in
testing compared to training are typical and highlight the
challenges models face when generalizing to new data. The
consistency in the decreasing trend of loss values across all folds
in both training and testing phases is a positive indicator.
However, the fact that the testing losses do not converge as
closely to the training losses as one might hope could suggest
areas for model improvement, possibly through more
sophisticated regularization techniques or additional training
data. Overall, the model demonstrates effective learning and a
reasonable degree of generalization. The gradual reduction in
loss values, both in training and testing, underscores the model's
ability to adapt to the data it is trained on and its competence in
handling new, unseen data. Overall, LSTM's performance in
this study demonstrates its robustness in handling complex data
sequences. Its ability to capture temporal dependencies is
evident from its superior metrics, particularly its low error rates
(RMSE, MSE, MAE) and high R? value, indicating high
predictive accuracy and model fit.
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Fig. 4 — (a, b) Loss function behaviors during training and testing, respectively.

The results are consistent across cross-validation and
suggest that LSTM is not prone to overfitting, maintaining
its performance across different data subsets. This stability is
a crucial aspect of reliable predictive modeling. Compared to
other architectures, LSTM stands out for its ability to
effectively process and learn from data. It underscores its
suitability for complex sequence modeling tasks, making it a
valuable tool. However, while reported error values provide
a broad assessment of model performance, it is important to
analyze error behavior under different operational scenarios.
A more detailed investigation into specific conditions, such
as high-speed driving, varying load conditions, and transient
acceleration phases, could reveal potential weaknesses in
prediction capability.

Additionally, while cross-validation ensures consistency
across different data subsets, it does not fully capture how
generalization applies to entirely new driving cycles that were
not included in the training. Future work should explore testing
the model on unseen driving conditions to assess its adaptability
to novel scenarios, ensuring robustness beyond the evaluated
dataset. For instance, evaluations on diverse real-world cycles,
including aggressive or heavy conditions, could provide deeper
insights into potential limitations. Extending this comparison to
state-of-the-art methods (refer to Table 1), this study is
distinguished by considering a significantly larger number of
outputs (five), unlike most others, except for the method
outlined in references [7], [9], which considered three outputs.
This ability to handle multiple outputs is a challenge and a
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testament to sophistication and adaptability. The ability to
process and predict multiple outcomes offers an understanding
of data dynamics, which is beneficial in complex predictive
scenarios. This aspect further demonstrates LSTM's versatility
and its edge over traditional methods that are typically limited
in the scope of output handling [14].

4. CONCLUSION

The paper presents an approach to EM optimization in
FCHEV through representation learning. It begins with a
robust data generation methodology, creating a
representative dataset capturing the dynamic nature of
FCHEVs under various driving conditions. Afterward,
systematic data processing is employed to refine driving
cycle data, tackling challenges in FCHEV energy
management. A significant part of the study is the use of
LSTM. Their careful architecture and a 3-fold cross-
validation technique effectively capture complex temporal
patterns in data. The paper also includes a comparative
analysis with other neural network architectures,
underscoring the LSTM model's superior performance in
predictive accuracy. Lower RMSE, MSE, and MAE values
and a higher R? value evidence this. The BiLSTM also shows
commendable performance, while the GRU and SLFN lag
behind, highlighting the importance of sophisticated
recurrent neural networks for this specific application. An
essential aspect of the study is the consistency in the standard
deviations across the folds for LSTM metrics, which adds to
the model's stability and reliability. Additionally, LSTM
handles a significantly larger number of outputs, showcasing
the model's advanced adaptability and sophistication. In
conclusion, this research provides valuable insights into
using LSTM networks for FCHEV energy optimization,
particularly in handling complex datasets, and paves the way
for further advancements in representation learning.
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