
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.
Vol. 70, 2, pp. 241–246, Bucarest, 2025

1 Key Laboratory of heavy-duty flexible robot in mechanical industry, Lanzhou University of Technology, Lanzhou 730050, China.
 E-mail: nanwenhu@163.com: 20160028@lut.edu.cn

 DOI: 10.59277/RRST-EE.2025.2.15

A VELOCITY SELF-LEARNING ALGORITHM FOR TIME-OPTIMAL
TRAJECTORY PLANNING ALONG FULLY SPECIFIED PATH – Part II

WENHU NAN1, HAOJUN QIN1
Key words: Industrial handling robot; Velocity self-learning; Hermite interpolation; Correction trajectory; Actual joint torque.

In response to the problem of uncertainty in the system dynamics model during time-optimal trajectory planning for industrial
handling robots, a novel online, self-learning, model-free time-optimal trajectory planning method is proposed. First, offline
kinematic constraints and the Hermite interpolation algorithm are used to obtain the optimal spline velocity curve under kinematic
constraints. Then, online trajectory data of the robot's operation is collected, and the trajectory generation method using a self-
learning strategy is employed to iteratively refine the trajectory iteratively, resulting in a time-optimal trajectory under actual
dynamic constraints. Finally, taking the UR5e cooperative robot and the ABB IRB9670-235 industrial robot as the experimental
platform, experiments verify the effectiveness and efficiency of the proposed method.

1. EXPERIMENT STUDY

1.1 THE ONLINE INTERACTIVE SELF-LEARNING
EXPERIMENT

Figure 8 shows this research takes the ur5e 6-DOF
cooperative robot as the experimental platform. The D-H
parameters of the robot are shown in Table 2. An absolute
encoder is installed inside each rotating joint of the robot to
detect the joint position. The robot carries a grinding head
with a mass of 2.3 kg.

Fig. 8 – UR5E 6-DOF cooperative robot.

Fig. 9 – Schematic diagram of learning process.

Like most industrial robots, UR5E robot has no torque
sensor installed inside the joint, so the joint torque cannot be
obtained in real time, but it can be calculated according to
the motor current. The motor torque is directly proportional
to the current, and the current value can be obtained at low

cost through the servo bus, so as to provide data basis for
model free dynamics online self-learning planning. At the
hardware level, the robot is connected with the computer
through Ethernet. On software level, the robot and computer
exchange real-time data using the Real-Time Data Exchange
(RTDE) protocol of UR robot, and the data acquisition
frequency is 125 Hz. The data acquisition and control
programs are developed based on the UR robot software
package of ROS.

Figure 10 shows the strategy trajectory generated in the
self-learning process. The black solid line represents the
speed track at learning times z = 0, which denotes the initial
speed track during self-learning. The red, green, blue, and
green lines represent the speed tracks during the learning
process. Finally, the magenta line represents the speed curve
after successful learning.

Fig. 10 – The joint velocity curve in learning process.

Figure 11 shows the actual measured joint torque curve
before and after learning. The extreme value of six joint
torque constraints is 30N/m. The red line and black line
are the measured torque before and after learning
respectively. It can be seen that after 14 times of learning,
all joint torques are within the limited constraint value.

As shown in Fig. 11(b) and Fig. 11(c), the torque of
joint 2 and joint 3 is greater than that of other joints, and
the actual measured torque of joint 2 and joint 3 exceeds
the extreme value of joint torque before learning. After 14
times of learning, the actual torque curves of joint 2 and
joint 3 are within the extreme value of joint torque. This
is because the off-line kinematic planning algorithm
before learning does not consider the actual dynamic

! " # $ % &! &" &#
!

'!

$!

(!

&"!

&)!

&%!

"&!

"#!

*+
,
-.
/01
203
1/
4+
.0
51
*6
3/7
8*
36

9.7/*8*:038,.6

! " # $ % &
!

"

#

$

%

&
'()! '()$ '()*
'()+ '()"# '()"%

,-
./
01
23
45
67
89
:

94567:

242 Velocity algorithm for time-optimal trajectory planning 2

factors. As a result, when the UR robot follows the speed
track before learning, the torque of some joint path points
exceeds the limit. After interactive learning with the real
environment, the dynamic constraints are introduced, and
the joint velocity trajectory is gradually adjusted locally.
Finally, the measured torque of the trajectory meets the
joint torque constraints. This proves the effectiveness of
the self-learning method proposed in this paper.

(a) The torque of joint 1.

(b) The torque of joint 2.

(c) The torque of joint 3.

(d) The torque of joint 4.

(e)The torque of joint 5.

(f) The torque of joint 6.

Fig. 11 – Measured torque before and after learning.

1.2 THE ONLINE INTERACTIVE SELF-LEARNING
EXPERIMENT FOR ABB IRB9670-235

We validate the proposed approach in this paper with an
industrial use case applied in the field of automobile hood
stamping testing. The working environment is an automatic
forging workstation. During the working process, the robot
in the workstation seizes the sheet blank from the conveyor
line and transports the sheet to the forging machine. The
schematic diagram of our proposed test system in ABB
RobotStudio6.08 is shown in Fig. 12. used to carry out a
dynamic simulation with MATLAB 2021a software and
conducts simulation research on time optimal trajectory
planning. When the mass of the forged plate and fixture is
100 kg, a semi elliptical path is selected for handing path.
First, we conduct off-line programming with Robotstdio6.08
and obtain the robotic trajectory in different handling speeds.
And then input the trajectory information into the robot
dynamics simulation system to verify the number of

Fig. 12 – The schematic diagram of our proposed test system.

torque constraints and the extent of violating the maximum
torque when the robot works with the trajectory planned by
offline software. Finally, the related trajectory data of the
offline planning is counted. The simulation results are shown
in Table 4. With the increase of the handling speed, the
number of torque constraints and torque overshoots
gradually increase, but the torque overshoot changes are
smaller by comparison with the number of torque constraints.
The main reason is that the gravity of the robot and the
handling load are large and the dynamic factors are small.
According to the analysis of the track running time, the
efficiency of the robot to complete the automatic handling is
gradually improving with the improvement of the handling
speed. However, for such a heavy load, the number of paths

! " # $ % &
'$!

'"&

!

"&

$!

!"
#$
%&
'(
)*
+

,'#-.+

! " # $ % &
'%&

'$!

'"&

!

"&

$!

!"
#$
%&
'(
)*
+

,'#-.+

! " # $ % &
'%&

'$!

'"&

!

"&

$!

()
*+
,-
./
0N
2

3.*452

! " # $ % &
'"&

'"!

'&

!

&

()
*+
,-
./
0N
2

3.*452

! " # $ % &
'$

'#

'"

!

"

()
*+
,-
./
0N
2

3.*452

! " # $ % &
'!(&

!(!

!(&

"(!

)*
+,
-.
/0
N2
3

4/+563

3 Wenhu Nan and Haojun Qin 243

where the robot motor exceeds the maximum torque is
increasing. Long term operation in torque overshoot state
will cause damage to the robot.

Table 4
Statistical analysis of trajectories at different velocity

Num Speed
(m/s)

Torque
constraint

points

Trajectory
time(s)

Torque
overshoot (%)

1 0.08 0 54.744 0
2 0.1 1 32.976 81.33
3 0.2 3 16.416 82.92
4 0.3 5 10.992 83.29
5 0.4 8 8.304 83.48
6 0.5 10 6.696 84.73
7 0.6 11 5.664 86.03
8 0.8 12 4. 334 98.13
9 1 16 3.552 84.15

10 1.2 21 2.616 87.72

Using the method proposed in this paper, input the semi

elliptical transport path, discretize the motion path, input the
algorithm, and finally obtain the optimal velocity of
kinematics, input the robot driver, drive the robot motion,
initialize the trajectory with the optimal velocity of motion
after spline interpolation, conduct the first iterative
interaction experiment with the virtual dynamics parameters,
and subsequently take the learning descent coefficient d =
0.15, the interactive learning experiment was conducted with
the strategy in subsection 2.3. The results are shown in Fig.
13. It can be seen that before learning, there are 16 torque
constraint points at first, and the number of joint torque
constraint points gradually decreases with the interactive
self-learning. As shown in Fig. 14, after 7 self-learning
sessions, there are no torque constraint points.

Fig. 13 – Schematic diagram of learning process

Fig. 14 – The joint velocity curve in learning process.

To show the benefit of the proposed approach, select the
workspace velocity of 0.06m/s in Table 4 as an example for

comparative study on the Robotstdio method and the
proposed method. The length of the selected handing path is
3.2895 m. The workspace velocity of two methods is shown
in Fig. 15(a) and (b), which can be observed that the two-
velocity curve is all like the trapezoidal velocity curve.
However, the velocity fluctuation with Robotstdio method is
larger than that of the proposed method. The speed curve
planned by the algorithm in this paper is approximate to
trapezoid, but the speed fluctuation is small, except in the
initial stage as shown in the Fig. 15(a). We conduct a
comprehensive analysis of the velocity distribution and find
that the velocity planned in the proposed method is more
stable and efficient than that with Robotstdio.

(a)

(b)

Fig. 15 – Comparison of (a) the workspace velocity planned by the
proposed algorithm, (b) the angular velocity by the Robotstdio.

With the proposed self-learning algorithm and the
Robotstdio method, the planned result of the joint velocity
along the path is shown in Fig. 16(a). It can be observed that
the planned trajectory with the proposed method is
continuous, the joint velocity changes smoothly, which
satisfies the limit of the angular velocity
(1.7453,1.7453,0.8727,1.7453,1.7453,1.7453) (rad/s) as
shown in Fig. 16(a) with dot line. Compared with the
proposed method in Fig. 16(a), we can observe that the joint
velocity planned by Robotstdio changes unevenly at the
starting stage in Fig. 16(b), which indicates that the
acceleration at the starting stage is high.

! " # $ % & ' ()
!

#

%

'

)

"!

"#

"%

"'

*+
,
-.
/01
203
1/
4+
.0
51
*6
3/7
8*
36

9.7/*8*:038,.6

! " # $ %
!

"

#

$
&'(! &'(# &'(%
&'() &'(* &

+,
-.
/0
12
34
56
78
9

834569

! " # $ % & ' ()
!*!

!*"

!*#

!*$

!*%

!*&

+
,-
./
012
345
6T8

V05,34T8

! " #! #" $! $" %! %" &! &" "! "" '!
!(!!

!(!$

!(!&

!(!'

)*
+,
-.
/0
12
34
5

6/.2*145

244 Velocity algorithm for time-optimal trajectory planning 4

(a)

(b)

Fig. 16 – Comparison of (a) the angular velocity planned by the
proposed algorithm, (b) the angular velocity by the Robotstdio.

As shown in Fig. 17(a), the joint torque with proposed
algorithm in this paper changes steadily and the amplitude of
fluctuation is small. The torque of all the joints along the
handing path is continuous, which also satisfies the limit of
the joint torque (5000, 12000, 5000, 5000, 5000, 5000)
(N/m). Compared with the trajectory planned by Robotstdio,
the joint torque fluctuates greatly at the initial stage as shown
in Fig. 17(b). In particular, the torque fluctuation value of
joint 6 is larger than that of others, which indicates that the
trajectory planned by Robotstdio does not consider dynamic
factors, resulting in the occurrence of dynamic oscillations.
The torque of the self-learning trajectory is within the actual
torque constraint range, and the torque changes steadily. The
results show that the algorithm proposed in this paper is
effective for conventional transportation path learning.

(a)

! " # $ % & ' ()
* #

* "

!

"

#
!
"#
$%
&'(
)*+
,-
./
0

1&2")*/0

3$&4')5 3$&4')6 3$&4')T

! " # $ % & ' ()
* #

* "

!

"

#

!
"#
$%
&'(
)*+
,-
./0

1&2")*/0

)3$&4')5)3$&4')6)3$&4')T

! " #! #" $! $" %! %" &! &" "! "" '!
(!) #!

(!) !"

!) !!

!) !"

!) #!

!
"#
$%
&'(
)*+
,-
./
0

1&2")*/0

3$&4')5 3$&4')6 3$&4')T

! " #! #" $! $" %! %" &! &" "! "" '!
(!) #

!) !

!) #

!) $

!) %

!) &

!) "

!
"#
$%
&'(
)*+
,-
./0

1&2")*/0

3$&4')5 3$&4')6 3$&4')T

! " # $ % & ' ()
* "#!!!

* "!!!!

*)!!!

* '!!!

* %!!!

* #!!!

!

#!!!

%!!!

!"
#$
%&
'()
*+
,

!-+&'(.,

/"-0N'2 /"-0N'3 /"-0N'4

! " # $ % & ' ()

*'!!

*%!!

*#!!

!

#!!

%!!

'!!

)!!

+,
-.
/0
N23
45
6

+T50N286

N9,T:;N% N9,T:;N& N9,T:;N'

! " #! #" $! $" %! %" &! &" "! "" '!
(#!!!!

()!!!

('!!!

(&!!!

($!!!

!

!"
#$
%&
'()
*+
,

!-+&'(.,

/"-0N'2 /"-0N'3 /"-0N'4

5 Wenhu Nan and Haojun Qin 245

(b)

Fig. 17 – Comparison of torque (a) planned by the proposed algorithm,
(b) planned by the Robotstdio algorithm.

The action time of the proposed algorithm is 7.4601
seconds, and the action time of the Robotstdio method at
0.06m/s is 54.744 seconds. The work efficiency of the
proposed algorithm is 7.34 times that of the Robotstdio
method. It demonstrates that the self-learning algorithm can
enhance the robot's working efficiency. Therefore, the
proposed self-learning algorithm can be applied to high-
efficiency handling operations, generating a continuous
trajectory that satisfies both kinematic and dynamical
constraints.

2. CONCLUSION
This paper presents a velocity self-learning method, a

finite approach for time-optimal trajectory planning
along specified paths with actual dynamic constraints.
The kinematic time-optimal velocity is obtained with a
dynamic programming technique, and the Hermite spline
interpolation amplitude limiting algorithm is designed to
smooth the initial velocity of the self-learning. To
determine the time-optimal trajectory that satisfies
actual dynamic constraints, an online velocity self-
learning trajectory decision algorithm is proposed
without requiring a dynamic model. The interactive
process of online self-learning is described in detail.

Finally, two experiments are conducted to demonstrate
the effectiveness of the proposed method. First, we
utilize the UR5E cooperative robot as the experimental
platform for the star transportation path. When the load
is 2.3 kg, through 14 interactive learning, the time-
optimal trajectory under the constraints of kinematics
and the actual joint torque is obtained, which proves the
effectiveness of the proposed method.

Second, a robotic trajectory planning for the hand
operation in automobile hood stamping is done by a self-
learning method and Robotstdio method. The
experimental results demonstrate that the proposed
algorithm's work efficiency is 7.34 times that of the
Robotstdio6.08 method, indicating that the self-learning
algorithm can enhance the robot's working efficiency.

Future work should include investigating the issue of
dynamic singularities using the velocity self-learning
method to enhance the algorithm’s adaptability. The
velocity self-learning method would also benefit from
dynamic singularities. The application of the self-

learning method in industrial robots, particularly those
involved in handling tasks, as well as welding robots
with a time-optimal goal, could be advantageous.

ACKNOWLEDGEMENTS
The support of the Gansu Provincial Science and

Technology Commissioner Special Project under Grant
23CXGA0024 is gratefully acknowledged. The authors
would like to thank the editor for their valuable contribution
to this work and the anonymous reviewers for their insightful
comments.

Received on 25 December 2023

REFERENCES

1. H. Pham, Q.C. Pham, A new approach to time–optimal path
parameterization based on reachability analysis, IEEE
Transactions on Robotics, 34, 3, pp. 645–659 (2018).

2. E. Barnett, C. Gosselin, A bisection algorithm for time-optimal
trajectory planning along fully specified paths, IEEE
Transactions on Robotics, 37, 1, pp. 131–145 (2020).

3. K. Shin, N. McKay, Minimum-time control of robotic
manipulators with geometric path constraints, IEEE
Transactions on Automatic Control, 30, 6, pp. 531–541
(1985).

4. J.A. Rojas-Quintero, F. Dubois, H.C. Ramírez-De-
Ávila, Riemannian formulation of Pontryagin’s maximum
principle for the optimal control of robotic manipulators,
Mathematics, 10, 7, pp. 1117–1128 (2022).

5. K. Shin, N. McKay, A dynamic programming approach to
trajectory planning of robotic manipulators, IEEE
Transactions on Automatic Control, 31, 6, pp. 491–500
(1986).

6. S. Singh, M. Leu, Optimal trajectory generation for robotic
manipulators using dynamic programming, J. Dyn. Syst.
Meas. Control, 109, 2, pp. 88–96 (1987).

7. Q.C. Pham, A general, fast, and robust implementation of the
time-optimal path parameterization algorithm, IEEE
Transactions on Robotics, 30, 6, pp. 1533–1540 (2014).

8. D. Verscheure, B. Demeulenaere, J. Swevers, et al, Time-optimal
path tracking for robots: A convex optimization approach,
IEEE Transactions on Automatic Control, 54, 10, pp. 2318–
2327 (2009).

9. Z. Kingston, M. Moll, L.E. Kavraki, Sampling-based methods for
motion planning with constraints, Annual review of control,
robotics, and autonomous systems, 1, 1, pp. 159–185 (2018).

10. F. Debrouwere, W.V. Loock, G. Pipeleers, et al, Time-optimal
path following for robots with convex–concave constraints
using sequential convex programming, IEEE Transactions on
Robotics, 29, 6, pp. 1485–1495 (2013).

11. A. Tharwat, M. Elhoseny, A.E. Hassanien, et al, Intelligent
Bézier curve-based path planning model using chaotic
particle swarm optimization algorithm, Cluster
Computing, 22, 4, pp. 1–22 (2019).

12. L. Zhang, et al, Time-optimal trajectory planning of serial
manipulator based on adaptive cuckoo search algorithm,
Journal of Mechanical Science and Technology, 35, 7, pp.
3171–3181 (2021).

13. A. Steinhauser, J. Swevers, An efficient iterative learning
approach to time-optimal path tracking for industrial robots,
IEEE Transactions on Industrial Informatics, 14, 11, pp.
5200–5207 (2018).

14. L. Yu, X. Shao, Y. Wei, K. Zhou, Intelligent land-vehicle model
transfer trajectory planning method based on deep
reinforcement learning, Sensors, 18, 9, 2905 (2018).

15. X. Lei, Z. Zhang, P. Dong, Dynamic path planning of unknown
environment based on deep reinforcement learning, Journal
of Robotics (2018).

16. S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D.
Quillen, Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection,
The International Journal of Robotics Research, 37, 4-5, pp.
421–436 (2018).

! "! #! $! %! &! '!
(&"!!

(&!!!

(%)!!

(%*!!

(%+!!

(%'!!

(%&!!

(%%!!
,-
./
0N
234
56
T

,86N239T

2:-8;<2% 2:-8;<2& 2:-8;<2'

246 Velocity algorithm for time-optimal trajectory planning 6

17. K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V.
Vassiliades, J.B. Mouret, Black-box data-efficient policy
search for robotics, In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
51–58 (2017).

18. S.A. Khader, H. Yin, P. Falco, et al, Data-efficient model
learning and prediction for contact-rich manipulation tasks,
IEEE Robotics and Automation Letters, 5, 3, pp. 4321–4328
(2020).

