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In response to the problem of uncertainty in the system dynamics model during time-optimal trajectory planning for industrial 
handling robots, a novel online, self-learning, model-free time-optimal trajectory planning method is proposed. First, offline 
kinematic constraints and the Hermite interpolation algorithm are used to obtain the optimal spline velocity curve under kinematic 
constraints. Then, online trajectory data of the robot's operation is collected, and the trajectory generation method using a self-
learning strategy is employed to iteratively refine the trajectory iteratively, resulting in a time-optimal trajectory under actual 
dynamic constraints. Finally, taking the UR5e cooperative robot and the ABB IRB9670-235 industrial robot as the experimental 
platform, experiments verify the effectiveness and efficiency of the proposed method. 

1. EXPERIMENT STUDY 

1.1 THE ONLINE INTERACTIVE SELF-LEARNING 
EXPERIMENT  

Figure 8 shows this research takes the ur5e 6-DOF 
cooperative robot as the experimental platform. The D-H 
parameters of the robot are shown in Table 2. An absolute 
encoder is installed inside each rotating joint of the robot to 
detect the joint position. The robot carries a grinding head 
with a mass of 2.3 kg. 

 
Fig. 8 – UR5E 6-DOF cooperative robot. 

 
Fig. 9 – Schematic diagram of learning process. 

 

Like most industrial robots, UR5E robot has no torque 
sensor installed inside the joint, so the joint torque cannot be 
obtained in real time, but it can be calculated according to 
the motor current. The motor torque is directly proportional 
to the current, and the current value can be obtained at low 

cost through the servo bus, so as to provide data basis for 
model free dynamics online self-learning planning. At the 
hardware level, the robot is connected with the computer 
through Ethernet. On software level, the robot and computer 
exchange real-time data using the Real-Time Data Exchange 
(RTDE) protocol of UR robot, and the data acquisition 
frequency is 125 Hz. The data acquisition and control 
programs are developed based on the UR robot software 
package of ROS. 

Figure 10 shows the strategy trajectory generated in the 
self-learning process. The black solid line represents the 
speed track at learning times z = 0, which denotes the initial 
speed track during self-learning. The red, green, blue, and 
green lines represent the speed tracks during the learning 
process. Finally, the magenta line represents the speed curve 
after successful learning. 

 
Fig. 10 – The joint velocity curve in learning process. 

 

Figure 11 shows the actual measured joint torque curve 
before and after learning. The extreme value of six joint 
torque constraints is 30N/m. The red line and black line 
are the measured torque before and after learning 
respectively. It can be seen that after 14 times of learning, 
all joint torques are within the limited constraint value. 

As shown in Fig. 11(b) and Fig. 11(c), the torque of 
joint 2 and joint 3 is greater than that of other joints, and 
the actual measured torque of joint 2 and joint 3 exceeds 
the extreme value of joint torque before learning. After 14 
times of learning, the actual torque curves of joint 2 and 
joint 3 are within the extreme value of joint torque. This 
is because the off-line kinematic planning algorithm 
before learning does not consider the actual dynamic 
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242 Velocity algorithm for time-optimal trajectory planning 2 

factors. As a result, when the UR robot follows the speed 
track before learning, the torque of some joint path points 
exceeds the limit. After interactive learning with the real 
environment, the dynamic constraints are introduced, and 
the joint velocity trajectory is gradually adjusted locally. 
Finally, the measured torque of the trajectory meets the 
joint torque constraints. This proves the effectiveness of 
the self-learning method proposed in this paper.  

 
(a) The torque of joint 1. 

 
(b) The torque of joint 2. 

 
(c) The torque of joint 3. 

 
(d) The torque of joint 4. 

 
(e)The torque of joint 5. 

 
(f) The torque of joint 6. 

Fig. 11 – Measured torque before and after learning. 

1.2 THE ONLINE INTERACTIVE SELF-LEARNING 
EXPERIMENT FOR ABB IRB9670-235 

We validate the proposed approach in this paper with an 
industrial use case applied in the field of automobile hood 
stamping testing. The working environment is an automatic 
forging workstation. During the working process, the robot 
in the workstation seizes the sheet blank from the conveyor 
line and transports the sheet to the forging machine. The 
schematic diagram of our proposed test system in ABB 
RobotStudio6.08 is shown in Fig. 12. used to carry out a 
dynamic simulation with MATLAB 2021a software and 
conducts simulation research on time optimal trajectory 
planning. When the mass of the forged plate and fixture is 
100 kg, a semi elliptical path is selected for handing path. 
First, we conduct off-line programming with Robotstdio6.08 
and obtain the robotic trajectory in different handling speeds. 
And then input the trajectory information into the robot 
dynamics simulation system to verify the number of  

 
Fig. 12 – The schematic diagram of our proposed test system. 

torque constraints and the extent of violating the maximum 
torque when the robot works with the trajectory planned by 
offline software. Finally, the related trajectory data of the 
offline planning is counted. The simulation results are shown 
in Table 4. With the increase of the handling speed, the 
number of torque constraints and torque overshoots 
gradually increase, but the torque overshoot changes are 
smaller by comparison with the number of torque constraints. 
The main reason is that the gravity of the robot and the 
handling load are large and the dynamic factors are small. 
According to the analysis of the track running time, the 
efficiency of the robot to complete the automatic handling is 
gradually improving with the improvement of the handling 
speed. However, for such a heavy load, the number of paths 
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where the robot motor exceeds the maximum torque is 
increasing. Long term operation in torque overshoot state 
will cause damage to the robot. 

Table 4 
Statistical analysis of trajectories at different velocity 

Num Speed 
(m/s) 

Torque 
constraint 

points  

Trajectory 
time(s) 

Torque 
overshoot (%) 

1 0.08 0 54.744 0 
2 0.1 1 32.976 81.33 
3 0.2 3 16.416 82.92 
4 0.3 5 10.992 83.29 
5 0.4 8 8.304 83.48 
6 0.5 10 6.696 84.73 
7 0.6 11 5.664 86.03 
8 0.8 12 4. 334 98.13 
9 1 16 3.552 84.15 

10 1.2 21 2.616 87.72 

 
Using the method proposed in this paper, input the semi 

elliptical transport path, discretize the motion path, input the 
algorithm, and finally obtain the optimal velocity of 
kinematics, input the robot driver, drive the robot motion, 
initialize the trajectory with the optimal velocity of motion 
after spline interpolation, conduct the first iterative 
interaction experiment with the virtual dynamics parameters, 
and subsequently take the learning descent coefficient d = 
0.15, the interactive learning experiment was conducted with 
the strategy in subsection 2.3. The results are shown in Fig. 
13. It can be seen that before learning, there are 16 torque 
constraint points at first, and the number of joint torque 
constraint points gradually decreases with the interactive 
self-learning. As shown in Fig. 14, after 7 self-learning 
sessions, there are no torque constraint points. 

 
Fig. 13 – Schematic diagram of learning process 

 
Fig. 14 – The joint velocity curve in learning process. 

To show the benefit of the proposed approach, select the 
workspace velocity of 0.06m/s in Table 4 as an example for 

comparative study on the Robotstdio method and the 
proposed method. The length of the selected handing path is 
3.2895 m. The workspace velocity of two methods is shown 
in Fig. 15(a) and (b), which can be observed that the two-
velocity curve is all like the trapezoidal velocity curve. 
However, the velocity fluctuation with Robotstdio method is 
larger than that of the proposed method. The speed curve 
planned by the algorithm in this paper is approximate to 
trapezoid, but the speed fluctuation is small, except in the 
initial stage as shown in the Fig. 15(a). We conduct a 
comprehensive analysis of the velocity distribution and find 
that the velocity planned in the proposed method is more 
stable and efficient than that with Robotstdio. 

 
(a) 

 
(b) 

Fig. 15 – Comparison of (a) the workspace velocity planned by the 
proposed algorithm, (b) the angular velocity by the Robotstdio. 

With the proposed self-learning algorithm and the 
Robotstdio method, the planned result of the joint velocity 
along the path is shown in Fig. 16(a). It can be observed that 
the planned trajectory with the proposed method is 
continuous, the joint velocity changes smoothly, which 
satisfies the limit of the angular velocity 
(1.7453,1.7453,0.8727,1.7453,1.7453,1.7453) (rad/s) as 
shown in Fig. 16(a) with dot line. Compared with the 
proposed method in Fig. 16(a), we can observe that the joint 
velocity planned by Robotstdio changes unevenly at the 
starting stage in Fig. 16(b), which indicates that the 
acceleration at the starting stage is high. 
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(a) 

 
(b) 

Fig. 16 – Comparison of (a) the angular velocity planned by the 
proposed algorithm, (b) the angular velocity by the Robotstdio. 

As shown in Fig. 17(a), the joint torque with proposed 
algorithm in this paper changes steadily and the amplitude of 
fluctuation is small. The torque of all the joints along the 
handing path is continuous, which also satisfies the limit of 
the joint torque (5000, 12000, 5000, 5000, 5000, 5000) 
(N/m). Compared with the trajectory planned by Robotstdio, 
the joint torque fluctuates greatly at the initial stage as shown 
in Fig. 17(b). In particular, the torque fluctuation value of 
joint 6 is larger than that of others, which indicates that the 
trajectory planned by Robotstdio does not consider dynamic 
factors, resulting in the occurrence of dynamic oscillations. 
The torque of the self-learning trajectory is within the actual 
torque constraint range, and the torque changes steadily. The 
results show that the algorithm proposed in this paper is 
effective for conventional transportation path learning. 
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(b) 

Fig. 17 – Comparison of torque (a) planned by the proposed algorithm, 
(b) planned by the Robotstdio algorithm. 

The action time of the proposed algorithm is 7.4601 
seconds, and the action time of the Robotstdio method at 
0.06m/s is 54.744 seconds. The work efficiency of the 
proposed algorithm is 7.34 times that of the Robotstdio 
method. It demonstrates that the self-learning algorithm can 
enhance the robot's working efficiency. Therefore, the 
proposed self-learning algorithm can be applied to high-
efficiency handling operations, generating a continuous 
trajectory that satisfies both kinematic and dynamical 
constraints. 

2. CONCLUSION 
This paper presents a velocity self-learning method, a 

finite approach for time-optimal trajectory planning 
along specified paths with actual dynamic constraints. 
The kinematic time-optimal velocity is obtained with a 
dynamic programming technique, and the Hermite spline 
interpolation amplitude limiting algorithm is designed to 
smooth the initial velocity of the self-learning. To 
determine the time-optimal trajectory that satisfies 
actual dynamic constraints, an online velocity self-
learning trajectory decision algorithm is proposed 
without requiring a dynamic model. The interactive 
process of online self-learning is described in detail.  

Finally, two experiments are conducted to demonstrate 
the effectiveness of the proposed method. First, we 
utilize the UR5E cooperative robot as the experimental 
platform for the star transportation path. When the load 
is 2.3 kg, through 14 interactive learning, the time-
optimal trajectory under the constraints of kinematics 
and the actual joint torque is obtained, which proves the 
effectiveness of the proposed method.  

Second, a robotic trajectory planning for the hand 
operation in automobile hood stamping is done by a self-
learning method and Robotstdio method. The 
experimental results demonstrate that the proposed 
algorithm's work efficiency is 7.34 times that of the 
Robotstdio6.08 method, indicating that the self-learning 
algorithm can enhance the robot's working efficiency. 

Future work should include investigating the issue of 
dynamic singularities using the velocity self-learning 
method to enhance the algorithm’s adaptability. The 
velocity self-learning method would also benefit from 
dynamic singularities. The application of the self-

learning method in industrial robots, particularly those 
involved in handling tasks, as well as welding robots 
with a time-optimal goal, could be advantageous. 
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