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In response to the problem of uncertainty in the system dynamics model during the time-optimal trajectory planning for the 
industrial handling robots, a novel online self-learning model-free time-optimal trajectory planning method is proposed. First, 
offline kinematic constraints and the Hermite interpolation algorithm are used to obtain the optimal spline velocity curve under 
kinematic constraints. Then, online trajectory data of the robot's operation is collected, and the trajectory generation method 
using a self-learning strategy is employed to refine the trajectory iteratively, resulting in a time-optimal trajectory under actual 
dynamic constraints. Finally, taking the ur5e cooperative robot and ABB IRB9670-235 industrial robot as the experimental 
platform, experiments verify the effectiveness and efficiency of the proposed method.

1. INTRODUCTION 

Time-optimal trajectory planning along fully specified 
paths has been widely used in industrial handling and other 
fields, such as the feeding and unloading operations in the 
manufacturing process of large parts. The theory of time-
optimal trajectory planning under geometric constraints is 
essentially solved [1]. However, the algorithm efficiency and 
adaptability under dynamic constraints [2] still need to 
increase. The typical time-optimal trajectory planning 
method includes the dynamics and model-free models. At 
present, there are two methods based on the dynamics model: 
the indirect method and the direct method. The model-free 
method mainly includes the reinforcement learning method. 

The first dynamic model method is an indirect method 
mainly consisting of the Pontryagin maximum principle and 
Dynamic programming [3–6]. The time optimal trajectory 
solved using the Pontryagin maximum principle is 
considered a “bang-bang” trajectory type and can be 
calculated by successive integration of the maximum and 
minimum acceleration. Theoretically, this approach is the 
quickest algorithm, as it adopts the bang-bang structure of 
the optimization algorithm. However, this method is difficult 
to apply due to the programming difficulties and the 
robustness issues associated with the dynamic singularities 
[7]. The other dynamic model method is a direct method, 
which is convex optimization [8–10] and types of swarm 
intelligence algorithms [11,12]. Convex optimization 
methods discretize the s-axis into segments and convert the 
original problem into a convex optimization problem with 
variables, equality, and inequality constraints. The swarm 
intelligence algorithm translates the time-optimal trajectory 
planning problem into a multi-variation optimization 
problem. This is like convex optimization methods in that 
both can consider more general constraints and objective 
functions, such as energy or torque rate, leading to less 
aggressive actuator use. The direct method has the 
limitations of producing suboptimal results and has low 
computation efficiency. Steinhauser et al. [13] present a two-
step iterative learning algorithm that compensates for such 
model-plant mismatch and finds the time-optimal motion, 
improving tracking performance and ensuring feasibility. 
Due to an efficient solution to the path tracking problem 
using a sequential convex log barrier method, the delay 
between consecutive task executions is eliminated. Although 
the model error can be reduced somewhat, the joint motor's 
torque overload problem cannot be fundamentally solved by 
relying on the dynamic model. 

 

Although the dynamic model method has made significant 
progress in theoretical planning speed and success rate, the 
actual calculation results are affected by the unmodeled part 
of robot system dynamics during actual operation. Therefore, 
the uncertainty of the dynamic model makes it challenging 
to apply the model-based method to the industrial handling 
robot in practice. 

The model-free method can avoid the problem of 
uncertainty in a dynamic model. Yu L et al. [14] introduced 
the motor dynamic load constraint into the reinforcement 
learning environment. They modified the strategy trajectory, 
finally obtaining the time-optimal trajectory that meets the 
motor dynamic load constraint. However, reinforcement 
learning mainly focuses on learning in task space [15], and 
the efficiency of reinforcement learning is low [16]. 
Chatzilygeroudis K et al. [17,18] challenged microdata and 
proposed a data efficiency reinforcement learning model. 
Reinforcement learning currently requires tens of thousands 
of trainings and the learning efficiency of trajectory planning 
is low. Therefore, it is a massive challenge for industrial 
robots to be handled in practice. 

Because of the uncertainty of the dynamic model and the 
low efficiency of reinforcement learning in the current 
research, this paper proposes an efficient online self-learning 
time optimal trajectory planning method. The parameterized 
trajectory is modified by learning the measured torque during 
the robot operation to ensure that the time-optimal speed 
trajectory meets the actual dynamic constraints. 

The rest of the paper is organized as follows: section 2 
presents the time-optimal trajectory planning problem. section 
3 introduces the online velocity self-learning algorithm. The 
performance of the proposed method is then tested on an 
example of a real robot in section 4. Finally, section 5 
concludes this article and discusses future research directions. 

2. PROBLEM STATEMENT 

The general time-optimal trajectory planning problem 
involves finding the optimal trajectory that can accurately 
follow a predefined path in the shortest possible time, while 
adhering to various constraints. To mathematically formulate 
this problem, we first need to consider the dynamic model 
for a general robotic manipulator, consider first the dynamic 
model for a general robotic manipulator, which can be 
expressed as follows, 

𝛕 = 𝛙(𝐪, 𝐪̇, 𝐪̈)𝛗 + 𝐅(𝐪, 𝐪̇),              (1) 
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where 𝛗  represents the set of inertia parameters and 𝐅 

represents the dissipative force vector. 𝛕 denotes the vector 

of generalized forces, and 𝛙  represents the inertia 

coefficient matrix, which is dependent solely on the joint 

angle and its derivative. The inertia parameters in 𝛗 

encompass both the inertia parameters of the robot's 

connecting links and the load inertia parameters. 

When tracking a fixed path, for a single parameter “s” in eq. 

(1) that increases monotonically along the path, the result is, 

𝛕(s) = 𝛙(𝐪(s), 𝐪̇(s), 𝐪̈(s))𝛗 + 𝐅(𝐪(s), 𝐪̇(s)),  (2) 

𝛕 ≦ 𝛕(s) ≦ 𝛕.              (3) 

By analyzing Fig. 1, it can be observed that in the process 

of grasping, the effective end link inertia parameters of the 

robot are the combination of the robot end link and load G. 

Because the load centroid position and mass are unknown, 

the effective inertia parameters of the end link are unknown. 

Even if the parameter identification method [16] is adopted, 

four parameters of mass and centroid in the load inertia 

parameters can be obtained, but there are ten complete load 

inertia parameters. Moreover, different load objects need to 

be identified, which is time-consuming. Considering the 

joint friction, nonlinear gap and other factors in the process 

of robot operation, the actual dynamic model exhibits 

significant uncertainty. Based on such fact, this paper 

presents a novel self-learning method, where the robot 

utilizes this method to adapt the changing load and achieve 

time optimal trajectory. 

 

Fig. 1 – A schematic of a working robot on path constraints. 

Kinematic constraints typically involve maximum joint 

velocities and accelerations, and is defined as, 

𝐪̇ ≦ 𝐪̇ ≦ 𝐪̇                        𝐪̇(𝑠) = 𝐪′(𝑠)𝑠̇,         (4)
 

𝐪̈ ≦ 𝐪̈ ≦ 𝐪̈                  𝐪̈(𝑠) = 𝐪′(𝑠)𝑠̈ + 𝐪′′(𝑠)𝑠̇2. (5) 

Finally, the TOTP problem can be formulated 

mathematically as follows, 

min(𝑇)   𝑇 =  ∫
d𝑠

𝑠̇

𝑆𝑒𝑛𝑑
0

,             (6) 

subject to

{
 
 

 
 
d𝒒(𝑠)

d𝑡
∈ [𝐪̇, 𝐪̇] ,

d2𝐪(𝑠)

d𝑡2
∈ [𝐪̈, 𝐪̈] ,

𝛕(𝑠) ∈ [𝛕, 𝛕],

           (7) 

where T is the total time to complete the trajectory, s(t) is the 

time function of parameter s (to be determined), d𝐪(𝑠)/d𝑡 
and d2𝐪(𝑠)/d𝑡2  correspond to (4) and (5) defined 

previously, which are kinematic constraints. The kinematic 

parameters of the robot can be obtained by consulting the 

factory parameters of the robot or by identifying the kinematic 

parameters. When the kinematic parameters are obtained, the 

MVC (maximum velocity curve) can be solved out at the path 

point s with (4), if all first-order constraints have been satisfied 

when following the formation of the MVC. However, second-

order kinematic constraints only establish an upper limit for 𝑠̇, 
following the formation of the MVC. Acceleration switching 

points are then identified, which are defined as locations in 
(𝑠, 𝑠̇) where there is a change in the constraint that governs 

the time optimal solution. Switching points can be identified 

by using direct methods [1]. Once the switching points are 

known, a forward integration of the second-order constraint 

equations is performed at the start of the path and at each 

switching point. The optimal path speed of the kinematic 

model can be obtained by referring to the method proposed by 

Barnett E. [2]. To achieve optimal dynamic speed, the 

uncertainty of the model speed needs to be addressed through 

interactive learning and descent methods. 

The joint velocity and acceleration constraints in eq. (3) can 

be addressed using the method proposed by Barnett E., known 

as MVCK (maximum velocity curve of kinematics), which 

solves for the optimal velocity curve under kinematic 

constraints based on the kinematic parameters. However, to 

tackle the uncertainty of joint torque parameters in eq. (3) and 

(7), this paper proposes an online self-learning algorithm 

within the framework of traditional reinforcement learning.  

3. THE ONLINE VELOCITY SELF-LEARNING 

ALGORITHM 

Here we present a novel time-optimal trajectory planning 

approach called velocity self-learning, which eliminates the 

need for integration and the identification of acceleration 

switching points. The technique is inspired by the observation 

that the optimal speed curve can be adjusted by decreasing the 

MVCK along path sections where violation of constraints 

happens. Velocity self-learning performs a single backward 

speed adjustment, to create a boundary curve in 𝑠 − 𝑠̇. This 

simplified approach is made possible through the use of the 

velocity self-learning algorithm, along with actual feedback 

torque for determining whether the torque exceeds the limit. 
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Fig. 2 – Self-learning diagram. 
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Reinforcement learning is a kind of self-learning system 

and its four basic elements are: state, action, strategy and 

reward. The principle is shown in Fig. 2. It is mainly to learn 

in the way of off-line or on-line by repeated experiment and 

maximize the reward through a limited number of actions to 

determine the best action strategy. 

Traditional reinforcement learning includes Q-matrix 

learning and DQN, but Q-matrix learning encounters the 

challenge of dimensional disaster. DQN (Deep Q-Network) 

requires tens of thousands of iterations for learning, making 

it apparent that the handling robot is unsuitable for 

undergoing such extensive repetitive training. 

Aiming at the problem of learning too many times in 

traditional reinforcement learning, this paper proposes the 

online self-learning algorithm shown in eq. (8). In essence, 

the online self-learning algorithm is not to adjust the network 

parameters or Q matrix values for learning, but to generate 

the optimal action strategy by directly adjusting the 

parameterized trajectory of the robot path. 

𝐴𝑧+1 = 𝐿(𝑆𝑧 , 𝑅𝑧), 𝑧 ∈ [0, 𝑍𝑚𝑎𝑥]           (8) 

In eq. (8), L represents the velocity self-learning trajectory 

decision algorithm, which will be introduced in section 3.2. 

𝑍𝑚𝑎𝑥  represents the maximum learning times. The state 

variables and return values are used as the input variables of 

the second self-learning algorithm, the output of function L 

is the action of the velocity self-learning algorithm. The 

robot generates a new action and interacts with the 

environment, and then continuously modifies the trajectory 

through the self-learning trajectory decision algorithm to 

obtain the time optimal trajectory that meets the 

requirements of actual dynamics constraints.  

3.1. INTERPOLATION OPTIMIZATION FOR MVCK 

An optimal interpolation technique is needed for 

processing input and output data for the velocity self-

learning algorithm, but more importantly it is needed 

because interpolants will be repeatedly evaluated during 

backward adjustment passes. As with other dynamic 

programming approaches, velocity self-learning algorithm 

begins by representing all relevant path variables as a 

function of a single parameter s. Although the TCP length is 

the most typical choice for s, in many cases it may not be the 

most appropriate option. For a general manipulator, a better 

selection for s can be determined by simply integrate [2], 

           d(𝑠) = ‖d(𝐪)‖ .                (9) 

This choice guarantees that all relevant joints and 

Cartesian variables depend on s. When evaluating an 

interpolant for a particular value of s, the optimization 

problem will be transformed into a single parameter variable. 

When the state 𝑺𝑧 is that the robot runs a fixed path, the joint 

velocity of the robot, 

𝐒𝑧 = {𝑠̇𝑧𝑘, 𝑘 ∈ [1,𝑚]}.               (10) 

Although offline kinematic planning can achieve a 

kinematically time-optimal velocity curve, commonly 

labeled as MVCK for short, it often lacks smoothness and 

leads to significant vibrations when directly applied to robot 

control. Therefore, Hermite cubic spline interpolation 

method is used to interpolate the path speed, and the path 

velocity is as follows, 

𝑠̇ = 𝐕(𝑠).                  (11) 

When interpolating𝑽𝑘 , firstly, the𝑽𝑘(𝑠)  is discretized 

according to the fixed path length, and the path interpolation 

nodes meet the following requirements, 

𝑠 = 𝑠1− 𝑠0 = 𝑠2−𝑠1 =⋯= 𝑠𝑐−𝑠𝑐−1 .      (12) 

Let the first derivative of cubic interpolation spline 

function 𝑽(𝑠) at the node 𝑠𝑖  be 𝑽′(𝑠𝑖) = 𝒎𝑖(𝑖 =
0,1,2,⋯ 𝑐) . To meet the splicing condition, the parameter 

𝑡 = 𝑠 − 𝑠𝑖/s  
is introduced, and the 𝑉(𝑠)   expression on 

𝑠𝑖 , 𝑠𝑖 , 

𝐕(𝑠) = (1 − 3𝑡2 + 2𝑡3)𝐕(𝑠𝑖) + (3𝑡
2 − 2𝑡3)𝐕(𝑠𝑖+1) +

 (𝑡 − 2𝑡2 + 𝑡3)𝐦𝑖 + (𝑡
3 − 𝑡2)𝐦𝑖+1.     (13) 

In eq. (13), the interpolation node of m𝑖  is unknown. 

Calculating the second derivative of (13), list the strictly 

diagonally dominant matrix according to the equality of the 

left and right limits at the path node and the boundary 

conditions, and solve 𝑚𝑖  by the pursuit method, to obtain 

the expression of the spline function 𝑽(𝑠), 

𝐕(𝑠) = {

𝐕1(𝑠 − 𝑠0), 𝑠 ∈ [𝑠0, 𝑠1],

𝐕2(𝑠 − 𝑠1), 𝑠 ∈ [𝑠1, 𝑠2],

       𝐕𝑐(𝑠 − 𝑠𝑐−1), 𝑠 ∈ [𝑠𝑐−1, 𝑠𝑐].

       (14) 

After calculating the joint path velocity interpolation 

function 𝐕(𝑠) , the derivative 𝐕(𝑠)  is obtained after joint 

path interpolation 

𝑠̈ = 𝐕′(𝑠) ∙ 𝐕(𝑠).                (15) 

When the robot is running, interpolation limiting 

algorithm is adopted for ensuring that the interpolated 

velocity trajectory does not exceed the kinematic optimal 

velocity curve 𝑽𝑘. As shown in Table 1, the velocity fine-

tuning parameter λ is used to locally adjust the kinematic 

optimal velocity curve 𝑽𝑘. Finally, the interpolated velocity 

trajectory curve 𝑽𝑠  satisfying the kinematic constraints is 

obtained. 

Table 1  

Interpolation limiting algorithm 

Input: 𝐕𝑘 

Output:  V 

1.Choose node(𝑠𝑖 , 𝐕𝑘(𝑠𝑖)), 𝑖 = 1,2, … , c, generating spline 𝐕 

2.do 

3.    for (i=1:c-1) 

4.          if (Segment of I spline speed exceeds its limit) 

5.              𝑉𝑘(𝑠𝑖) ← 𝑉𝑘(𝑠𝑖) − 𝜆 

6.    generating new spline 𝑉 

7.while (𝑉 ∈ 𝑉𝑘) 

8.Save 𝑉 and 𝑉𝑘(𝑠𝑖) 

 

To get action 𝐀𝑧   in (14), we substitute 𝐕𝑠  into eq. (4), 

resulting in 𝐪̇𝑧𝑘  , then we define the action value of self-

learning, 

𝐀𝑧 = {𝐪𝑧𝑘 , 𝐪̇𝑧𝑘, 𝑘 ∈ [1,𝑚]}.         (16) 

When the robot tracks the fixed path, the initial action is 

calculated from the kinematic interpolation velocity curve 

𝐕𝑠. In the subsequent learning process, it continues iterative 

learning to generate new state trajectory 𝐒𝑧+1 , and then 

obtains a new action 𝐀𝑧+1 through formulas (5) and (21). In 

the z-th track operation cycle, collect the dynamic track data 

set, which is defined as 𝑫𝑧, 
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𝐃𝑧 = {𝐪𝑧𝑘
′ , 𝛕𝑧𝑘

′ }, 𝑘 ∈ [1,𝑚].          (17) 

𝐃𝑧  includes the feedback position of the joint and the 

measured torque information of the joint. After the robot runs 

according to the predetermined trajectory every time, 

calculating the torque constraint state vector 𝜆𝑧𝑘 collected 

for the z-th sampling according to the 𝑫𝑧, 

𝜆𝑧𝑘 = {
0    𝜏𝑘 ∈ [−𝜏𝑘𝑚𝑎𝑥 , 𝜏𝑘𝑚𝑎𝑥]

1    𝜏𝑘 ∉ [−𝜏𝑘𝑚𝑎𝑥 , 𝜏𝑘𝑚𝑎𝑥]
    𝑘 ∈ [1,𝑚] (18) 

Defining the return value of the z-th sampling, 

𝐑𝑧 = ∑ λ𝑧𝑘
𝑚
𝑘=1 .                 (19) 

It can be seen that 𝐑𝑧   is the sum of λ𝑧𝑘 . After several 

times of learning, if the return value 𝐑𝑧  of the trajectory is 

zero, it means that self-learning is successful. 

3.2 THE SELF-LEARNING TRAJECTORY DECISION 

ALGORITHM 

After the state parameterization operation in section 3.1, 

the self-learning trajectory decision operation is carried out. 

The specific implementation steps are as follows:  

Step 1: Calculating the return value 𝐑𝑧 , then, collecting 

the dynamic data set 𝐃𝑧 and calculating the return value 𝐑𝑧  
according to eq. (18) and (19).  

Step 2: Correcting velocity operation of path node under 

torque constraint. Judging return value 𝐑𝑧  . If it is zero, it 

means that learning is successful; If it is not zero, judging 

whether there is a torque constraint on each interpolation 

spline from the endpoint of the trajectory in the reverse order 

of the path. If it is found that the joint torque exceeds the 

limit at the path point k on spline curve segment I, adjusting 

the speed according to eq. (20), 

{
𝑠̇𝑖 ≥ 𝑠̇𝑖−1 → 𝑠̇𝑖 = 𝑠̇𝑖 − 𝑑

𝑠̇𝑖 < 𝑠̇𝑖−1 → 𝑠̇𝑖−1 = 𝑠̇𝑖−1 − 𝑑
   𝑖 ∈ [𝑐, 𝑐 − 1,⋯ ,1].  (20) 

In (20), d is the torque correction coefficient. The velocity 

of each torque constraint point is corrected based on the 

reverse order of path points according to the eq. (20). This 

signifies the completion of the correction operation for the 

torque constraint. 

Step 3: Correcting speed operation of path node under 

acceleration constraint. After step 2 is completed, the torque 

of the track is learned, but the acceleration of the track may 

be constrained. Using eq. (15) and (5) to calculate the joint 

acceleration and judging whether there is acceleration 

constraint on each spline curve from the termination track 

point in reverse order of the path. If the acceleration exceeds 

the limit at the path point on spline curve segment i, the speed 

is adjusted according to eq. (21), 

{
𝑠̇𝑐 ≥ 𝑠̇𝑐−1 → 𝑠̇𝑐 = 𝑠̇𝑐 − 𝛿,

𝑠̇𝑐 < 𝑠̇𝑐−1 → 𝑠̇𝑐−1 = 𝑠̇𝑐−1 − 𝛿,
   𝑘 ∈ [𝑐, 𝑐 − 1,⋯ ,1]. (21) 

In eq. (21), δ  is the acceleration correction coefficient. 

According to the reverse order of path points, from spline 

segment c to 1, the velocity of the acceleration constraint 

point is corrected according to eq. (21), which means that the 

correction operation of acceleration constraint is completed. 

Step 4: According to the new spline node [𝑠̇0, 𝑠̇1, ⋯ 𝑠𝑐], 
the action 𝐴𝑧 is calculated by (16) and (4), which is the new 

driving trajectory calculated by the self-learning strategy. So 

far, a self-learning trajectory decision algorithm is 

completed. 

After the above four steps were completed, the time-

optimal trajectory determined by actual dynamics was 

obtained. The following will introduce the interactive 

process of online self-learning. 

3.3. THE INTERACTIVE PROCESS OF ONLINE 

SELF-LEARNING 

Figure 3 shows the online interactive self-learning process 

is mainly composed of kinematics offline planning, 

environmental system and self-learning system. The 

interactive learning process is composed of trajectory 

information generated in the robot operation process and 

generated in the robot operation process and driving 

trajectory generated by the self-learning system. The 

interactive learning process is composed of trajectory data 

information collection, self-learning trajectory decision and 

robot operation. The specific steps are shown in Fig. 3. 

Step 1: Obtaining the initial value of the driving 

trajectory. Firstly, the kinematics off-line planning algorithm 

in [2] is used to obtain 𝐕𝑘 , and then section 3.1 states 

trajectory parameter algorithm is used to parameterize 𝐕𝑘, 

and limit the amplitude to smooth the parameterized optimal 

velocity trajectory to obtain the initial action value 𝐴0, then 

drives the robot to track the fixed path motion, collect the 

motion data, and then proceed to step 2. 

Step 2: Obtaining the velocity self-learning optimal 

trajectory decision. The trajectory decision algorithm in 

Section 3.2 is used for self-learning. After learning, the robot 

controller sends it to the driver to drive the robot and collects 

the dynamic data to set 𝐃𝑧 again.  

Off line kinematic 
planning

Collect  Dz

Self learning 

trajectory 

decision

Robot
task

object

Rz 0？ 

Self learning 

system

Kinematic model

environmental 

system

Spline limiting 
operation

z>zmax？

Yes

No

Learning 

failure

Learning 

success

+1zA

0A

Yes

No

 

Fig. 3 – Velocity Self-learning framework. 

Step 3: Detecting termination conditions. If 𝐑𝑧   is not 

zero within the specified learning times, carrying out the self-

learning optimal trajectory decision in step 2. If 𝐑𝑧  is zero, 

it means that learning is successful. If the number of learning 

times Z exceeds Zmax, the algorithm fails.  

4. EXPERIMENT STUDY 

4.1. KINEMATIC OFF-LINE PLANNING 

INTERPOLATION OPTIMIZATION VERIFICATION 

In order to verify the effectiveness and feasibility of the 

proposed self-learning algorithm for kinematics off-line 

planning, matlab2021a software on a computer with CPU 
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frequency of 3.19G Hz and memory of 8GB is used for 

kinematic off-line planning research. UR5E cooperative 

robot is selected as the experimental platform (Fig. 8). The 

robot kinematics parameters are shown in Table 2. Based on 

the robot parameters, the optimal trajectory planning 

research for kinematics off-line time is carried out. 

Table 2 

D-H parameters of UR5E robot 

i li/m αi /(°) di/m θi  Max speed(°/s) 

1 0 90 0 θ1 180 
2 –0.425 0 0 θ2 180 

3 –0.39225 0 0 θ3 180 

4 0 90 0.10915 θ4 180 
5 0 -90 0.09465 θ5 180 

6 0 0 0.0823 θ6 180 

 

To verify the effectiveness of the algorithm proposed in 

this paper, considering the curvature variability of the path in 

the actual handling operation, this paper uses the NURBS 

curve interpolator to generate a space star curve track with 

variable curvature. Among the parameters of the space star 

curve, the degree k = 2, the node vector u = [0  0  0  0  1/9  

2/9  3/9  4/9  5/9  6/9  7/9  8/9  1  1  1  1  1  1  1  1], 

and the vertex parameters are shown in Table 3. The path 

generated by interpolation is shown by the black solid line in 

Fig. 4, and the robot TCP takes the star path shown by the black 

solid line. Experiments verify the effectiveness of the proposed 

algorithm for arbitrary path time optimal planning. 

 

Fig. 4 – Working space diagram of star shaped handling path. 

Table 3 

Vertex parameters of star curve 

Node serial 

number  

Control point coordinates /m Weight 

factor 

1 (–0.10,0.25,0.30) 1 
2 (–0.004,0.25,0.348) 1 

3 (–0.004,0.25,0.428) 1 

4 (0.092,0.25, 0.364) 1 
5 (0.188,0.25, 0.38) 0.7 

6 (0.116,0.25, 0.3) 1 

7 (0.188,0.25, 0.22) 0.7 
8 (0.092,0.25, 0. 236) 1 

9 (–0.004,0.25,0. 172) 1 

10 (–0.004,0.25,0. 252) 1 

The online velocity self-learning algorithm optimizes the 

star trajectory, and the results are shown in Figs. 5–7. Figure 5 

shows the joint path velocity on the phase plane. It can be 

seen that the path speed curve optimized by the online self-

learning algorithm does not exceed the maximum speed 

curve of joint speed constraints. 
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Fig. 5 – Phase plane velocity diagram. 
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Fig. 6 – Joint velocity diagram. 
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Fig. 7 – Joint acceleration diagram. 
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Figures 6 and 7 show the joint velocity and acceleration 

curves optimized by the online self-learning algorithm, 

respectively. The joint velocity and acceleration curves 

optimized by the offline kinematics algorithm are within the 

constraints, and the results optimized by the offline 

kinematics algorithm meet the kinematic constraints, which 

verifies the effectiveness of the proposed algorithm. 

Received on 25, December, 2023 
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