
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.

Vol. 70, 1, pp. 109–114, Bucarest, 2025

1 Key Laboratory of Heavy-Duty Flexible Robot in Mechanical Industry, Lanzhou University of Technology, Lanzhou 730050, China

 E-mails: nanwenhu@163.co; 20160028@lut.edu.cn

DOI: 10.59277/RRST-EE.2025.1.19

A VELOCITY SELF-LEARNING ALGORITHM FOR TIME-OPTIMAL
TRAJECTORY PLANNING ALONG THE FULLY SPECIFIED PATH – PART I

WENHU NAN1, HAOJUN QIN1

Keywords: Industrial handling robot; Velocity self-learning; Hermite interpolation; Correction trajectory; Actual joint torque.

In response to the problem of uncertainty in the system dynamics model during the time-optimal trajectory planning for the
industrial handling robots, a novel online self-learning model-free time-optimal trajectory planning method is proposed. First,
offline kinematic constraints and the Hermite interpolation algorithm are used to obtain the optimal spline velocity curve under
kinematic constraints. Then, online trajectory data of the robot's operation is collected, and the trajectory generation method
using a self-learning strategy is employed to refine the trajectory iteratively, resulting in a time-optimal trajectory under actual
dynamic constraints. Finally, taking the ur5e cooperative robot and ABB IRB9670-235 industrial robot as the experimental
platform, experiments verify the effectiveness and efficiency of the proposed method.

1. INTRODUCTION

Time-optimal trajectory planning along fully specified
paths has been widely used in industrial handling and other
fields, such as the feeding and unloading operations in the
manufacturing process of large parts. The theory of time-
optimal trajectory planning under geometric constraints is
essentially solved [1]. However, the algorithm efficiency and
adaptability under dynamic constraints [2] still need to
increase. The typical time-optimal trajectory planning
method includes the dynamics and model-free models. At
present, there are two methods based on the dynamics model:
the indirect method and the direct method. The model-free
method mainly includes the reinforcement learning method.

The first dynamic model method is an indirect method
mainly consisting of the Pontryagin maximum principle and
Dynamic programming [3–6]. The time optimal trajectory
solved using the Pontryagin maximum principle is
considered a “bang-bang” trajectory type and can be
calculated by successive integration of the maximum and
minimum acceleration. Theoretically, this approach is the
quickest algorithm, as it adopts the bang-bang structure of
the optimization algorithm. However, this method is difficult
to apply due to the programming difficulties and the
robustness issues associated with the dynamic singularities
[7]. The other dynamic model method is a direct method,
which is convex optimization [8–10] and types of swarm
intelligence algorithms [11,12]. Convex optimization
methods discretize the s-axis into segments and convert the
original problem into a convex optimization problem with
variables, equality, and inequality constraints. The swarm
intelligence algorithm translates the time-optimal trajectory
planning problem into a multi-variation optimization
problem. This is like convex optimization methods in that
both can consider more general constraints and objective
functions, such as energy or torque rate, leading to less
aggressive actuator use. The direct method has the
limitations of producing suboptimal results and has low
computation efficiency. Steinhauser et al. [13] present a two-
step iterative learning algorithm that compensates for such
model-plant mismatch and finds the time-optimal motion,
improving tracking performance and ensuring feasibility.
Due to an efficient solution to the path tracking problem
using a sequential convex log barrier method, the delay
between consecutive task executions is eliminated. Although
the model error can be reduced somewhat, the joint motor's
torque overload problem cannot be fundamentally solved by
relying on the dynamic model.

Although the dynamic model method has made significant
progress in theoretical planning speed and success rate, the
actual calculation results are affected by the unmodeled part
of robot system dynamics during actual operation. Therefore,
the uncertainty of the dynamic model makes it challenging
to apply the model-based method to the industrial handling
robot in practice.

The model-free method can avoid the problem of
uncertainty in a dynamic model. Yu L et al. [14] introduced
the motor dynamic load constraint into the reinforcement
learning environment. They modified the strategy trajectory,
finally obtaining the time-optimal trajectory that meets the
motor dynamic load constraint. However, reinforcement
learning mainly focuses on learning in task space [15], and
the efficiency of reinforcement learning is low [16].
Chatzilygeroudis K et al. [17,18] challenged microdata and
proposed a data efficiency reinforcement learning model.
Reinforcement learning currently requires tens of thousands
of trainings and the learning efficiency of trajectory planning
is low. Therefore, it is a massive challenge for industrial
robots to be handled in practice.

Because of the uncertainty of the dynamic model and the
low efficiency of reinforcement learning in the current
research, this paper proposes an efficient online self-learning
time optimal trajectory planning method. The parameterized
trajectory is modified by learning the measured torque during
the robot operation to ensure that the time-optimal speed
trajectory meets the actual dynamic constraints.

The rest of the paper is organized as follows: section 2
presents the time-optimal trajectory planning problem. section
3 introduces the online velocity self-learning algorithm. The
performance of the proposed method is then tested on an
example of a real robot in section 4. Finally, section 5
concludes this article and discusses future research directions.

2. PROBLEM STATEMENT

The general time-optimal trajectory planning problem
involves finding the optimal trajectory that can accurately
follow a predefined path in the shortest possible time, while
adhering to various constraints. To mathematically formulate
this problem, we first need to consider the dynamic model
for a general robotic manipulator, consider first the dynamic
model for a general robotic manipulator, which can be
expressed as follows,

𝛕 = 𝛙(𝐪, 𝐪̇, 𝐪̈)𝛗 + 𝐅(𝐪, 𝐪̇), (1)

110 Velocity algorithm for time-optimal trajectory planning 2

where 𝛗 represents the set of inertia parameters and 𝐅

represents the dissipative force vector. 𝛕 denotes the vector

of generalized forces, and 𝛙 represents the inertia

coefficient matrix, which is dependent solely on the joint

angle and its derivative. The inertia parameters in 𝛗

encompass both the inertia parameters of the robot's

connecting links and the load inertia parameters.

When tracking a fixed path, for a single parameter “s” in eq.

(1) that increases monotonically along the path, the result is,

𝛕(s) = 𝛙(𝐪(s), 𝐪̇(s), 𝐪̈(s))𝛗 + 𝐅(𝐪(s), 𝐪̇(s)), (2)

𝛕 ≦ 𝛕(s) ≦ 𝛕. (3)

By analyzing Fig. 1, it can be observed that in the process

of grasping, the effective end link inertia parameters of the

robot are the combination of the robot end link and load G.

Because the load centroid position and mass are unknown,

the effective inertia parameters of the end link are unknown.

Even if the parameter identification method [16] is adopted,

four parameters of mass and centroid in the load inertia

parameters can be obtained, but there are ten complete load

inertia parameters. Moreover, different load objects need to

be identified, which is time-consuming. Considering the

joint friction, nonlinear gap and other factors in the process

of robot operation, the actual dynamic model exhibits

significant uncertainty. Based on such fact, this paper

presents a novel self-learning method, where the robot

utilizes this method to adapt the changing load and achieve

time optimal trajectory.

Fig. 1 – A schematic of a working robot on path constraints.

Kinematic constraints typically involve maximum joint

velocities and accelerations, and is defined as,

𝐪̇ ≦ 𝐪̇ ≦ 𝐪̇ 𝐪̇(𝑠) = 𝐪′(𝑠)𝑠̇, (4)

𝐪̈ ≦ 𝐪̈ ≦ 𝐪̈ 𝐪̈(𝑠) = 𝐪′(𝑠)𝑠̈ + 𝐪′′(𝑠)𝑠̇2. (5)

Finally, the TOTP problem can be formulated

mathematically as follows,

min(𝑇) 𝑇 = ∫
d𝑠

𝑠̇

𝑆𝑒𝑛𝑑
0

, (6)

subject to

{

d𝒒(𝑠)

d𝑡
∈ [𝐪̇, 𝐪̇] ,

d2𝐪(𝑠)

d𝑡2
∈ [𝐪̈, 𝐪̈] ,

𝛕(𝑠) ∈ [𝛕, 𝛕],

 (7)

where T is the total time to complete the trajectory, s(t) is the

time function of parameter s (to be determined), d𝐪(𝑠)/d𝑡
and d2𝐪(𝑠)/d𝑡2 correspond to (4) and (5) defined

previously, which are kinematic constraints. The kinematic

parameters of the robot can be obtained by consulting the

factory parameters of the robot or by identifying the kinematic

parameters. When the kinematic parameters are obtained, the

MVC (maximum velocity curve) can be solved out at the path

point s with (4), if all first-order constraints have been satisfied

when following the formation of the MVC. However, second-

order kinematic constraints only establish an upper limit for 𝑠̇,
following the formation of the MVC. Acceleration switching

points are then identified, which are defined as locations in
(𝑠, 𝑠̇) where there is a change in the constraint that governs

the time optimal solution. Switching points can be identified

by using direct methods [1]. Once the switching points are

known, a forward integration of the second-order constraint

equations is performed at the start of the path and at each

switching point. The optimal path speed of the kinematic

model can be obtained by referring to the method proposed by

Barnett E. [2]. To achieve optimal dynamic speed, the

uncertainty of the model speed needs to be addressed through

interactive learning and descent methods.

The joint velocity and acceleration constraints in eq. (3) can

be addressed using the method proposed by Barnett E., known

as MVCK (maximum velocity curve of kinematics), which

solves for the optimal velocity curve under kinematic

constraints based on the kinematic parameters. However, to

tackle the uncertainty of joint torque parameters in eq. (3) and

(7), this paper proposes an online self-learning algorithm

within the framework of traditional reinforcement learning.

3. THE ONLINE VELOCITY SELF-LEARNING

ALGORITHM

Here we present a novel time-optimal trajectory planning

approach called velocity self-learning, which eliminates the

need for integration and the identification of acceleration

switching points. The technique is inspired by the observation

that the optimal speed curve can be adjusted by decreasing the

MVCK along path sections where violation of constraints

happens. Velocity self-learning performs a single backward

speed adjustment, to create a boundary curve in 𝑠 − 𝑠̇. This

simplified approach is made possible through the use of the

velocity self-learning algorithm, along with actual feedback

torque for determining whether the torque exceeds the limit.

self-learning

System

robot load

 environment

Fig. 2 – Self-learning diagram.

g

Ln

PnG

L0

G

Path

3 Wenhu Nan, Haojun Qin 111

Reinforcement learning is a kind of self-learning system

and its four basic elements are: state, action, strategy and

reward. The principle is shown in Fig. 2. It is mainly to learn

in the way of off-line or on-line by repeated experiment and

maximize the reward through a limited number of actions to

determine the best action strategy.

Traditional reinforcement learning includes Q-matrix

learning and DQN, but Q-matrix learning encounters the

challenge of dimensional disaster. DQN (Deep Q-Network)

requires tens of thousands of iterations for learning, making

it apparent that the handling robot is unsuitable for

undergoing such extensive repetitive training.

Aiming at the problem of learning too many times in

traditional reinforcement learning, this paper proposes the

online self-learning algorithm shown in eq. (8). In essence,

the online self-learning algorithm is not to adjust the network

parameters or Q matrix values for learning, but to generate

the optimal action strategy by directly adjusting the

parameterized trajectory of the robot path.

𝐴𝑧+1 = 𝐿(𝑆𝑧 , 𝑅𝑧), 𝑧 ∈ [0, 𝑍𝑚𝑎𝑥] (8)

In eq. (8), L represents the velocity self-learning trajectory

decision algorithm, which will be introduced in section 3.2.

𝑍𝑚𝑎𝑥 represents the maximum learning times. The state

variables and return values are used as the input variables of

the second self-learning algorithm, the output of function L

is the action of the velocity self-learning algorithm. The

robot generates a new action and interacts with the

environment, and then continuously modifies the trajectory

through the self-learning trajectory decision algorithm to

obtain the time optimal trajectory that meets the

requirements of actual dynamics constraints.

3.1. INTERPOLATION OPTIMIZATION FOR MVCK

An optimal interpolation technique is needed for

processing input and output data for the velocity self-

learning algorithm, but more importantly it is needed

because interpolants will be repeatedly evaluated during

backward adjustment passes. As with other dynamic

programming approaches, velocity self-learning algorithm

begins by representing all relevant path variables as a

function of a single parameter s. Although the TCP length is

the most typical choice for s, in many cases it may not be the

most appropriate option. For a general manipulator, a better

selection for s can be determined by simply integrate [2],

 d(𝑠) = ‖d(𝐪)‖ . (9)

This choice guarantees that all relevant joints and

Cartesian variables depend on s. When evaluating an

interpolant for a particular value of s, the optimization

problem will be transformed into a single parameter variable.

When the state 𝑺𝑧 is that the robot runs a fixed path, the joint

velocity of the robot,

𝐒𝑧 = {𝑠̇𝑧𝑘, 𝑘 ∈ [1,𝑚]}. (10)

Although offline kinematic planning can achieve a

kinematically time-optimal velocity curve, commonly

labeled as MVCK for short, it often lacks smoothness and

leads to significant vibrations when directly applied to robot

control. Therefore, Hermite cubic spline interpolation

method is used to interpolate the path speed, and the path

velocity is as follows,

𝑠̇ = 𝐕(𝑠). (11)

When interpolating𝑽𝑘 , firstly, the𝑽𝑘(𝑠) is discretized

according to the fixed path length, and the path interpolation

nodes meet the following requirements,

𝑠 = 𝑠1− 𝑠0 = 𝑠2−𝑠1 =⋯= 𝑠𝑐−𝑠𝑐−1 . (12)

Let the first derivative of cubic interpolation spline

function 𝑽(𝑠) at the node 𝑠𝑖 be 𝑽′(𝑠𝑖) = 𝒎𝑖(𝑖 =
0,1,2,⋯ 𝑐) . To meet the splicing condition, the parameter

𝑡 = 𝑠 − 𝑠𝑖/s
is introduced, and the 𝑉(𝑠) expression on

𝑠𝑖 , 𝑠𝑖 ,

𝐕(𝑠) = (1 − 3𝑡2 + 2𝑡3)𝐕(𝑠𝑖) + (3𝑡
2 − 2𝑡3)𝐕(𝑠𝑖+1) +

 (𝑡 − 2𝑡2 + 𝑡3)𝐦𝑖 + (𝑡
3 − 𝑡2)𝐦𝑖+1. (13)

In eq. (13), the interpolation node of m𝑖 is unknown.

Calculating the second derivative of (13), list the strictly

diagonally dominant matrix according to the equality of the

left and right limits at the path node and the boundary

conditions, and solve 𝑚𝑖 by the pursuit method, to obtain

the expression of the spline function 𝑽(𝑠),

𝐕(𝑠) = {

𝐕1(𝑠 − 𝑠0), 𝑠 ∈ [𝑠0, 𝑠1],

𝐕2(𝑠 − 𝑠1), 𝑠 ∈ [𝑠1, 𝑠2],

 𝐕𝑐(𝑠 − 𝑠𝑐−1), 𝑠 ∈ [𝑠𝑐−1, 𝑠𝑐].

 (14)

After calculating the joint path velocity interpolation

function 𝐕(𝑠) , the derivative 𝐕(𝑠) is obtained after joint

path interpolation

𝑠̈ = 𝐕′(𝑠) ∙ 𝐕(𝑠). (15)

When the robot is running, interpolation limiting

algorithm is adopted for ensuring that the interpolated

velocity trajectory does not exceed the kinematic optimal

velocity curve 𝑽𝑘. As shown in Table 1, the velocity fine-

tuning parameter λ is used to locally adjust the kinematic

optimal velocity curve 𝑽𝑘. Finally, the interpolated velocity

trajectory curve 𝑽𝑠 satisfying the kinematic constraints is

obtained.

Table 1

Interpolation limiting algorithm

Input: 𝐕𝑘

Output: V

1.Choose node(𝑠𝑖 , 𝐕𝑘(𝑠𝑖)), 𝑖 = 1,2, … , c, generating spline 𝐕

2.do

3. for (i=1:c-1)

4. if (Segment of I spline speed exceeds its limit)

5. 𝑉𝑘(𝑠𝑖) ← 𝑉𝑘(𝑠𝑖) − 𝜆

6. generating new spline 𝑉

7.while (𝑉 ∈ 𝑉𝑘)

8.Save 𝑉 and 𝑉𝑘(𝑠𝑖)

To get action 𝐀𝑧 in (14), we substitute 𝐕𝑠 into eq. (4),

resulting in 𝐪̇𝑧𝑘 , then we define the action value of self-

learning,

𝐀𝑧 = {𝐪𝑧𝑘 , 𝐪̇𝑧𝑘, 𝑘 ∈ [1,𝑚]}. (16)

When the robot tracks the fixed path, the initial action is

calculated from the kinematic interpolation velocity curve

𝐕𝑠. In the subsequent learning process, it continues iterative

learning to generate new state trajectory 𝐒𝑧+1 , and then

obtains a new action 𝐀𝑧+1 through formulas (5) and (21). In

the z-th track operation cycle, collect the dynamic track data

set, which is defined as 𝑫𝑧,

112 Velocity algorithm for time-optimal trajectory planning 4

𝐃𝑧 = {𝐪𝑧𝑘
′ , 𝛕𝑧𝑘

′ }, 𝑘 ∈ [1,𝑚]. (17)

𝐃𝑧 includes the feedback position of the joint and the

measured torque information of the joint. After the robot runs

according to the predetermined trajectory every time,

calculating the torque constraint state vector 𝜆𝑧𝑘 collected

for the z-th sampling according to the 𝑫𝑧,

𝜆𝑧𝑘 = {
0 𝜏𝑘 ∈ [−𝜏𝑘𝑚𝑎𝑥 , 𝜏𝑘𝑚𝑎𝑥]

1 𝜏𝑘 ∉ [−𝜏𝑘𝑚𝑎𝑥 , 𝜏𝑘𝑚𝑎𝑥]
 𝑘 ∈ [1,𝑚] (18)

Defining the return value of the z-th sampling,

𝐑𝑧 = ∑ λ𝑧𝑘
𝑚
𝑘=1 . (19)

It can be seen that 𝐑𝑧 is the sum of λ𝑧𝑘 . After several

times of learning, if the return value 𝐑𝑧 of the trajectory is

zero, it means that self-learning is successful.

3.2 THE SELF-LEARNING TRAJECTORY DECISION

ALGORITHM

After the state parameterization operation in section 3.1,

the self-learning trajectory decision operation is carried out.

The specific implementation steps are as follows:

Step 1: Calculating the return value 𝐑𝑧 , then, collecting

the dynamic data set 𝐃𝑧 and calculating the return value 𝐑𝑧
according to eq. (18) and (19).

Step 2: Correcting velocity operation of path node under

torque constraint. Judging return value 𝐑𝑧 . If it is zero, it

means that learning is successful; If it is not zero, judging

whether there is a torque constraint on each interpolation

spline from the endpoint of the trajectory in the reverse order

of the path. If it is found that the joint torque exceeds the

limit at the path point k on spline curve segment I, adjusting

the speed according to eq. (20),

{
𝑠̇𝑖 ≥ 𝑠̇𝑖−1 → 𝑠̇𝑖 = 𝑠̇𝑖 − 𝑑

𝑠̇𝑖 < 𝑠̇𝑖−1 → 𝑠̇𝑖−1 = 𝑠̇𝑖−1 − 𝑑
 𝑖 ∈ [𝑐, 𝑐 − 1,⋯ ,1]. (20)

In (20), d is the torque correction coefficient. The velocity

of each torque constraint point is corrected based on the

reverse order of path points according to the eq. (20). This

signifies the completion of the correction operation for the

torque constraint.

Step 3: Correcting speed operation of path node under

acceleration constraint. After step 2 is completed, the torque

of the track is learned, but the acceleration of the track may

be constrained. Using eq. (15) and (5) to calculate the joint

acceleration and judging whether there is acceleration

constraint on each spline curve from the termination track

point in reverse order of the path. If the acceleration exceeds

the limit at the path point on spline curve segment i, the speed

is adjusted according to eq. (21),

{
𝑠̇𝑐 ≥ 𝑠̇𝑐−1 → 𝑠̇𝑐 = 𝑠̇𝑐 − 𝛿,

𝑠̇𝑐 < 𝑠̇𝑐−1 → 𝑠̇𝑐−1 = 𝑠̇𝑐−1 − 𝛿,
 𝑘 ∈ [𝑐, 𝑐 − 1,⋯ ,1]. (21)

In eq. (21), δ is the acceleration correction coefficient.

According to the reverse order of path points, from spline

segment c to 1, the velocity of the acceleration constraint

point is corrected according to eq. (21), which means that the

correction operation of acceleration constraint is completed.

Step 4: According to the new spline node [𝑠̇0, 𝑠̇1, ⋯ 𝑠𝑐],
the action 𝐴𝑧 is calculated by (16) and (4), which is the new

driving trajectory calculated by the self-learning strategy. So

far, a self-learning trajectory decision algorithm is

completed.

After the above four steps were completed, the time-

optimal trajectory determined by actual dynamics was

obtained. The following will introduce the interactive

process of online self-learning.

3.3. THE INTERACTIVE PROCESS OF ONLINE

SELF-LEARNING

Figure 3 shows the online interactive self-learning process

is mainly composed of kinematics offline planning,

environmental system and self-learning system. The

interactive learning process is composed of trajectory

information generated in the robot operation process and

generated in the robot operation process and driving

trajectory generated by the self-learning system. The

interactive learning process is composed of trajectory data

information collection, self-learning trajectory decision and

robot operation. The specific steps are shown in Fig. 3.

Step 1: Obtaining the initial value of the driving

trajectory. Firstly, the kinematics off-line planning algorithm

in [2] is used to obtain 𝐕𝑘 , and then section 3.1 states

trajectory parameter algorithm is used to parameterize 𝐕𝑘,

and limit the amplitude to smooth the parameterized optimal

velocity trajectory to obtain the initial action value 𝐴0, then

drives the robot to track the fixed path motion, collect the

motion data, and then proceed to step 2.

Step 2: Obtaining the velocity self-learning optimal

trajectory decision. The trajectory decision algorithm in

Section 3.2 is used for self-learning. After learning, the robot

controller sends it to the driver to drive the robot and collects

the dynamic data to set 𝐃𝑧 again.

Off line kinematic
planning

Collect Dz

Self learning

trajectory

decision

Robot
task

object

Rz 0？

Self learning

system

Kinematic model

environmental

system

Spline limiting
operation

z>zmax？

Yes

No

Learning

failure

Learning

success

+1zA

0A

Yes

No

Fig. 3 – Velocity Self-learning framework.

Step 3: Detecting termination conditions. If 𝐑𝑧 is not

zero within the specified learning times, carrying out the self-

learning optimal trajectory decision in step 2. If 𝐑𝑧 is zero,

it means that learning is successful. If the number of learning

times Z exceeds Zmax, the algorithm fails.

4. EXPERIMENT STUDY

4.1. KINEMATIC OFF-LINE PLANNING

INTERPOLATION OPTIMIZATION VERIFICATION

In order to verify the effectiveness and feasibility of the

proposed self-learning algorithm for kinematics off-line

planning, matlab2021a software on a computer with CPU

5 Wenhu Nan, Haojun Qin 113

frequency of 3.19G Hz and memory of 8GB is used for

kinematic off-line planning research. UR5E cooperative

robot is selected as the experimental platform (Fig. 8). The

robot kinematics parameters are shown in Table 2. Based on

the robot parameters, the optimal trajectory planning

research for kinematics off-line time is carried out.

Table 2

D-H parameters of UR5E robot

i li/m αi /(°) di/m θi Max speed(°/s)

1 0 90 0 θ1 180
2 –0.425 0 0 θ2 180

3 –0.39225 0 0 θ3 180

4 0 90 0.10915 θ4 180
5 0 -90 0.09465 θ5 180

6 0 0 0.0823 θ6 180

To verify the effectiveness of the algorithm proposed in

this paper, considering the curvature variability of the path in

the actual handling operation, this paper uses the NURBS

curve interpolator to generate a space star curve track with

variable curvature. Among the parameters of the space star

curve, the degree k = 2, the node vector u = [0 0 0 0 1/9

2/9 3/9 4/9 5/9 6/9 7/9 8/9 1 1 1 1 1 1 1 1],

and the vertex parameters are shown in Table 3. The path

generated by interpolation is shown by the black solid line in

Fig. 4, and the robot TCP takes the star path shown by the black

solid line. Experiments verify the effectiveness of the proposed

algorithm for arbitrary path time optimal planning.

Fig. 4 – Working space diagram of star shaped handling path.

Table 3

Vertex parameters of star curve

Node serial

number

Control point coordinates /m Weight

factor

1 (–0.10,0.25,0.30) 1
2 (–0.004,0.25,0.348) 1

3 (–0.004,0.25,0.428) 1

4 (0.092,0.25, 0.364) 1
5 (0.188,0.25, 0.38) 0.7

6 (0.116,0.25, 0.3) 1

7 (0.188,0.25, 0.22) 0.7
8 (0.092,0.25, 0. 236) 1

9 (–0.004,0.25,0. 172) 1

10 (–0.004,0.25,0. 252) 1

The online velocity self-learning algorithm optimizes the

star trajectory, and the results are shown in Figs. 5–7. Figure 5

shows the joint path velocity on the phase plane. It can be

seen that the path speed curve optimized by the online self-

learning algorithm does not exceed the maximum speed

curve of joint speed constraints.

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

s(
ra

d
/s

)

s (rad)

 MVC

 MVCK

.
.

Fig. 5 – Phase plane velocity diagram.

0.0 0.5 1.0 1.5 2.0

-3

-2

-1

0

1

2

3

v
e
lo

c
it

y
 (

ra
d

/s
)

t (s)

joint 1 joint 2 joint 3

0.0 0.5 1.0 1.5 2.0

-3

-2

-1

0

1

2

3

v
e
lo

c
it

y
 (

ra
d

/s
)

t (s)

 joint 4 joint 5 joint 6

Fig. 6 – Joint velocity diagram.

0.0 0.5 1.0 1.5 2.0

-20

-10

0

10

20

joint 1 joint 2 joint 3

a
c
c
e
l.

(r
a
d

/t
2
)

t(s)

0.0 0.5 1.0 1.5 2.0

-20

-10

0

10

20
 joint 4 joint 5 joint 6

a
c
c
e
l.

(r
a
d

/t
2
)

t(s)

Fig. 7 – Joint acceleration diagram.

114 Velocity algorithm for time-optimal trajectory planning 6

Figures 6 and 7 show the joint velocity and acceleration

curves optimized by the online self-learning algorithm,

respectively. The joint velocity and acceleration curves

optimized by the offline kinematics algorithm are within the

constraints, and the results optimized by the offline

kinematics algorithm meet the kinematic constraints, which

verifies the effectiveness of the proposed algorithm.

Received on 25, December, 2023

REFERENCES

1. H. Pham, Q.C. Pham, A new approach to time-optimal path

parameterization based on reachability analysis, IEEE

Transactions on Robotics, 34, 3, pp. 645–659 (2018).

2. E. Barnett, C. Gosselin, A bisection algorithm for time-optimal trajectory

planning along fully specified paths, IEEE Transactions on

Robotics, 37, 1, pp. 131–145 (2020).

3. K. Shin, N. Mckay, Minimum-time control of robotic manipulators with

geometric path constraints, IEEE Transactions on Automatic

Control, 30, 6, pp. 531–541 (1985).

4. J.A. Rojas-Quintero, F. Dubois, H.C. Ramírez-De-Ávila, Riemannian

formulation of Pontryagin’s maximum principle for the optimal control

of robotic manipulators, Mathematics, 10, 7, pp. 1117–1128 (2022).

5. K. Shin, N. McKay, A dynamic programming approach to trajectory

planning of robotic manipulators, IEEE Transactions on Automatic

Control, 31, 6, pp. 491–500 (1986).

6. S. Singh, M. Leu, Optimal trajectory generation for robotic manipulators

using dynamic programming, J. Dyn. Syst. Meas. Control, 109, 2,

pp. 88–96 (1987).

7. Q.C. Pham, A general, fast, and robust implementation of the time-

optimal path parameterization algorithm, IEEE Transactions on

Robotics, 30, 6, pp. 1533–1540 (2014).

8. D. Verscheure, B. Demeulenaere, J. Swevers et al., Time-optimal path
tracking for robots: A convex optimization approach, IEEE

Transactions on Automatic Control, 54, 10, pp. 2318–2327 (2009).

9. Z. Kingston, M. Moll, L.E. Kavraki, Sampling-based methods for motion
planning with constraints, Annual Review of Control, Robotics, and

Autonomous Systems, 1, 1, pp. 159–185 (2018).

10. F. Debrouwere, W.V. Loock, G. Pipeleers et al., Time-optimal path
following for robots with convex–concave constraints using

sequential convex programming, IEEE Transactions on Robotics,

29, 6, pp. 1485–1495 (2013).
11. A. Tharwat, M. Elhoseny, A.E. Hassanien et al., Intelligent Bézier

curve-based path planning model using chaotic particle swarm

optimization algorithm, Cluster Computing, 22, 4, pp. 1–22 (2019).
12. L. Zhang, Y. Wang, X. Zaho et al., Time-optimal trajectory planning of

serial manipulator based on adaptive cuckoo search algorithm, J. of

Mechanical Science and Technology, 35, 7, pp. 3171–3181 (2021).
13. A. Steinhauser, J. Swevers, An efficient iterative learning approach to

time-optimal path tracking for industrial robots, IEEE Transactions

on Industrial Informatics, 14, 11, pp. 5200–5207 (2018).
14. L. Yu, X. Shao, Y. Wei, K. Zhou, Intelligent land-vehicle model transfer

trajectory planning method based on deep reinforcement learning,

Sensors, 18, 9, p. 2905 (2018).
15. X. Lei, Z. Zhang, P. Dong, Dynamic path planning of unknown environment

based on deep reinforcement learning, J. of Robotics, 2018.
16. S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen, Learning hand-

eye coordination for robotic grasping with deep learning and large-

scale data collection, The International Journal of Robotics
Research, 37, 4–5, pp. 421–436 (2018).

17. K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassiliades,

J.B. Mouret, Black-box data-efficient policy search for robotics,
2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), IEEE, pp. 51–58 (2017).

18. S.A. Khader, H. Yin, P. Falco et al., Data-efficient model learning and
prediction for contact-rich manipulation tasks, IEEE Robotics and

Automation Letters, 5, 3, pp. 4321–4328 (2020).

