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This paper addresses the speed tracking problem of a permanent magnet synchronous motor (PMSM) under the influence of 
parametric uncertainties and external load torque disturbances. The nonlinear dynamics associated with both PMSM and load 
is considered time variant and uncertain. Two robust controllers, namely, backstepping and adaptive backstepping are designed 
to drive the speed of a PMSM to a predefined trajectory. The backstepping controller is used to stabilize and control the speed of 
motor while the uncertain parameters and disturbances are estimated by adaptive laws. These adaptation laws and the use of 
performance improvement term in the backstepping control reduce the gain requirements. The stability analysis of both the 
controllers via Lyapunov method ensures the asymptotic convergence of the overall close loop system. Theoretical analysis is 
presented to summarize characteristics of both the controllers. Numerical simulations are provided to verify effectiveness of the 
proposed controller.  

1. INTRODUCTION 
A permanent magnet synchronous motor (PMSM) is 

widely used as an actuator in several industrial applications 
because of its high efficiency, superior power density and 
large torques to inertia ratio. However, the PMSM is always 
subject to a highly complex and a nonlinear dynamic 
model. In order to get efficient performance, consequently 
complex controllers must be designed. 

Traditional linear control schemes such as proportional 
derivative (PD), proportional integral (PI), and proportional 
integral derivative (PID) are extensively used in many 
industrial electric drive applications because of their 
simplicity [1]. However, owing to their sensitivity to 
parametric uncertainties and load torque perturbations, they 
failed to demonstrate the desired performance in high electric 
drive industrial applications such as speed tracking [2, 3]. To 
overcome this problem, a variety of nonlinear control [4] 
schemes have been investigated. These nonlinear control 
schemes are categorized in two classes: The first one is based 
on accurate model of PMSM such as exact feedback 
linearization control [5] and decoupling control [6]. The 
performance of these control methods degrades in case of 
deviation of the parameters from their nominal values. The 
second class constitutes of the control techniques which 
robustly deal with parametric variations and external 
disturbances. It mainly includes variable structure sliding 
mode control [7, 8], fuzzy control [9], H-infinity control [10] 
and artificial intelligence (AI) based PI–PID tuning methods 
[11, 12]. However, these control schemes suffer from certain 
drawbacks. In sliding mode variable structure control, 
uncertain parameters must satisfy matching condition and the 
main drawback is the chattering phenomena, which restricts 
its applications [13]. The sliding mode control scheme using 
smooth control law is presented to substantially alleviate the 
chattering phenomenon [14, 15]. Fuzzy control strategy 
depends upon fuzzification of Takagi-Sugeno. In H-infinity 
control, the operating states are ignored under special 
conditions [16]. In AI-based PI-PID tuning methods, the 
controller design is based on system model and thus exhibits 

excellent robustness to variable parametric uncertainties and 
disturbances. Nonetheless, due to complex algorithm and 
computational efforts, real time implementation of such 
methods is difficult and cumbersome. 

Backstepping control is a recently developed nonlinear 
control scheme, which addresses the uncertainties in 
parameters of a nonlinear system especially those not 
satisfying matching conditions [17]. The key concept behind 
backstepping control is the decomposition of high-dimensional 
complex nonlinear systems into numerous low-dimensional 
simple subsystems [18]. Virtual control input for each 
subsystem is then designed. The final control law can be 
formulated systematically through appropriate Lyapunov 
functions. 

Amongst various reported adaptive control methods, 
backstepping design offers excellent performance for 
highly nonlinear systems in terms of adaptation capability 
to parametric uncertainties and disturbance rejection 
capacity [17]. However, despite its benefits, backstepping 
control is confronted with several limitations solving 
complex regression matrix [19], over-parameterization 
caused by adaptive parameters larger than uncertain plant 
parameters, repetitions of differentiations process of virtual 
control inputs [20] and the requirement of partial or 
complete system model in the design of controller. 

An adaptive robust controller based on backstepping 
control approach is derived and proposed in [21] for the 
speed control of PMSM. The controller exhibits robustness 
to system’s uncertain parameters such as viscous friction, 
stator resistance and unknown load torque perturbations. 
Nonetheless, this methodology uses feedback linearization, 
which might cause to cancel out some useful nonlinearities. 
In [22], another adaptive backstepping control law for 
PMSM is presented. The flux linkage, stator winding 
resistance and load torque are considered to be unknown 
and bounded. Variations in the inductance and damping can 
degrade the performance of the presented control scheme. 

To deal with these limitations, the present paper aims to 
design a nonlinear and robust backstepping controller based 
on adaptive laws to track the desired speed trajectory 
accurately. Unlike [22], all the parameters of the motor are 
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considered to be unknown and time varying. The gain 
requirement is small and the transient improvement term in 
the control law offers fast convergence by tracking the 
speed error to zero asymptotically. 

2. SYSTEM MODELLING 
Nomenclature of various symbols for system modelling is 

listed in Table 1. To facilitate the controller design, the 
mathematical model of a PMSM has been derived in the well-
known (d–q) frame using the Park’s transformation as [13, 22] 

€ 

˙ ω =
3pλ f

2J
iq − bω− τ , (1) 

€ 

˙ i q = −
R
L

iq − id pω−
λ f p

L
ω+

vq

L
, (2) 

€ 

˙ i d = −
R
L

id + iq pω+
vd
L

. (3) 

Table 1 
Nomenclature 

Symbol Description 
 Angular speed of rotor 
 q-axis current 
 d-axis current 

R Stator resistance 
L Stator inductance 
b Damping constant to inertia ratio 
J Rotor inertia 

 Rotor to stator flux linkage 
p Number of pole pairs 

 Load torque to inertia ratio 
 
The derived model specifying three state variables are 

given by (1)–(3). The values of the parameters given in Table 
1 are usually obtained with experiments. However, in 
practical applications, the parameters accuracy cannot be 
guaranteed and the dynamics of PMSM always possess 
uncertainties. Therefore, the following assumptions are made. 
 
Assumption 1: The parameters resistance, damping factor, 
load torque, inertia of rotor and inductance are uncertain, 
unknown and bounded given by 

€ 

R = RN + ΔR , B = BN + ΔB , TL =TLN + ΔT , 

€ 

J = JN + ΔJ , L = LN + ΔL , 

where the parameters with subscript n are nominal values 
and are disturbances in the parameters.  
 
Assumption 2: The time derivatives of parametric 
perturbations in assumption 1 are bounded and satisfying 
the condition i.e., . 

3. BACKSTEPPING CONTROL 

Let  be the desired speed trajectory, the tracking error 
can be defined as . Taking the time derivative 
of and using (1) followed by Assumption 1, we can obtain, 

, (4) 

where  represents the lumped uncertain term. The 
control objective is to regulate the tracking error and to 
zero by designing the control scheme. To achieve sufficient 
condition for the stability, a virtual controller acting as 
reference q-axis current can be designed as, 

€ 

α1 =
2JN

3pλ f
bNω+ τN + ˙ ω d − k1z1( ) . (5) 

Defining the q-axis current error as . Using this 
relationship and substituting (5) in (4) yields 

€ 

˙ z 1 = −k1z1 +
2JN

3pλ f
z2 + f1 Δ( ) , (6) 

where is a positive constant. The error variable for d-axis 
current is defined as . The derivative of and 

can be calculated as follows, 

€ 

˙ z 2 = −
RN
LN

iq − id pω−
λ f p
LN

ω+
vq

LN
+ f2 Δ( )

−
2JN

3pλ f
bN − k1( )

3pλ f

2JN
iq − bNω− τN + f1 Δ( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−
2JN

3pλ f
˙ ̇ ω d + k1 ˙ ω d( )

, (7) 

€ 

˙ z 3 = −
Rn
LN

id + iq pω+
vd
LN

+ f3 Δ( ) . (8) 

The control laws to ensure the stability of the currents  

and can be selected as, 

€ 

vq = RNiq + LNid pω+ λ f pω−
3Lpλ f

2JN
z1

+
2JNLN
3pλ f

bN − k1( )
3pλ f

2JN
iq − bNω− τN

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

+
2LNJN
3pλ f

˙ ̇ ω d + k1 ˙ ω d( ) − LNk2z2

, (9) 

€ 

vd = Rnid − LNiq pω− LNk3z3 , (10) 

where and are non-zero positive constants. The 
convergence of , and can be proven by defining 

€ 

V1 = 1/2z1
2 +1/2z2

2 +1/2z3
2  as a Lyapunov function. 

Taking its time derivative and substituting (6)–(8) and the 
control inputs (9) and (10) yields, 

€ 

˙ V 1 = −k1z1
2 − k2z2

2 − k3z3
2 + z1 f1 Δ( ) + z2 f2 Δ( )

+z3 f3 Δ( ) − z2
2JN

3pλ f
bN − k1( ) f1 Δ( )

. (11) 

All the error variables in (11) robustly converge to zero if 
the control gains satisfy the following condition 
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. (12) 

4. ADAPTIVE BACKSTEPPING 
Adaptive backstepping control technique is the combina-

tion of backstepping control and adaptive laws and is more 
robust for the systems having matched as well as 
mismatched uncertainties. To ensure the stability of overall 
control system, a Lyapunov function is introduced, which 
guarantees that the angular speed of PMSM tracks the 
desired signal efficiently thus neutralizing the effects of 
uncertainty in the parameters. The control objective is to 
regulate the tracking error and the error dynamics to 
zero by designing the control scheme. This can be achieved 
by taking time derivative of and using (1) 

. (13) 

Defining Lyapunov candidate function and 
taking its time derivative and using (13) one can obtain 

. (14) 

Let be the state corresponding to virtual control that 

stabilizes the speed error, so the stabilizing function can 
be designed as 

€ 

α1 =
2 ˆ J 

3pλ f

ˆ b ω+ ˆ τ + ˙ ω d − k1z1( ) , (15) 

where and are estimation of damping and load toque to 
inertia ratio respectively. Using (15), (14) becomes 

€ 

˙ V 1 = −k1z1
2 +

3pλ f

2J
z1z2 + z1

˜ b ω+ ˜ τ +
˜ J 
J

ˆ b ω+ ˆ τ (
⎧ 
⎨ 
⎩ 

+ ˙ ω d − k1z1)
⎫ 
⎬ 
⎭ 

, (16) 

where and are damping, load torque to ineria ratio 
and inertia estimation errors repectively. From (16), it can 
be noticed that if the estimation errors become zero and the 
q-axis current error is stabilized then, the actual speed will 
track the desired speed asymptotically. Since is a state 

variable, which is not equal to , the corresponding error 
dynamics can be obtained as , where can 
be calculated by taking time derivative of virtual control 
input (15) and can be written as 

€ 

˙ α 1 =
2 ˆ J 

3pλ f

ˆ ˙ b ω+ ˆ ˙ τ + ˙ ̇ ω d + k1 ˙ ω d
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

+
2 ˆ ˙ J 

3pλ f

ˆ b ω+ ˆ τ + ˙ ω d − k1z1( ) +
2 ˆ J 

3pλ f

ˆ b − k1( ) ˙ ω .

 (17) 

For the sake of brevity let, 

€ 

A =
2 ˆ J 

3pλ f

ˆ ˙ b ω+ ˆ ˙ τ + ˙ ̇ ω d + k1 ˙ ω d
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

+
2 ˆ ˙ J 

3pλ f

ˆ b ω+ ˆ τ + ˙ ω d − k1z1( ),
 (18) 

with the above equation, (17) can be written as 

€ 

˙ α 1 = A +
ˆ J 
J

ˆ b − k1( )iq −
2 ˆ J 

3pλ f

ˆ b − k1( ) bω+ τ( ) . (19) 

Using (2) and (19), the q-axis current error dynamics can be 
obtained as 

€ 

˙ z 2 = −
R
L

iq − id pω−
λ f p

L
ω+

vq

L
− A −

ˆ J 
J

ˆ b − k1( )iq

+
2 ˆ J 

3pλ f

ˆ b − k1( ) bω+ τ( ).
 (20) 

In order to develop the control input that stabilizes q-
axis current error trajectory, defining the augmented 
Lyapunov function and its time derivative as 

€ 

˙ V 2 = z2 −
R
L

iq − id pω−
λ f p

L
ω+

vq

L
− A

⎧ 
⎨ 
⎩ 

−
ˆ J 
J

ˆ b − k1( )iq +
2 ˆ J 

3pλ f

ˆ b − k1( ) bω+ τ( )
⎫ 
⎬ 
⎪ 

⎭ ⎪ 
.
 (21) 

The control input voltage that regulates current error z2 can 
be designed as 

€ 

vq = −k2
ˆ L z2 + ˆ R iq + id pω ˆ L + pλ f ω+ ˆ L A

+ ˆ L ˆ b − k1( )iq −
2 ˆ L ̂  J 

3pλ f

ˆ b − k1( ) ˆ b ω+ ˆ τ ( ) − kpz2ξ
2,

 (22) 

where

€ 

ξ =
3pλf ˆ L 
2JN

iq − ω− ˙ ω d is performance improvement 

term with Kp= 30, and are estimated forms of the 
resistance and inductance, respectively. Substituting q-axis 
control voltage in (21) yields  

€ 

˙ V 2 = −k2z2
2 − kpz2

2ξ2 + z2

˜ L 
L

A2 +
˜ R 
L

z2iq

−
˜ J 
J

ˆ b − k1( )z2iq −
˜ b 2 ˆ J 

3pλ f

ˆ b − k1( )ωz2

− ˜ τ 2 ˆ J 
3pλ f

ˆ b − k1( )z2,

 (23) 

€ 

A2 = −k2z2 + iq pω+ A − ˆ b − k1( )iq −
2 ˆ J 

3pλ f

ˆ b − k1( ) ˆ b ω+ ˆ τ ( )iq

Defining d-axis current error as . Taking its time 
derivative and using (3), we obtain 

€ 

˙ z 3 = −
R
L

id + iq pω+
vd
L

. (24) 

Define Lyapunov candidate function as . By 
taking time derivative and using (24) one can obtain 
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€ 

˙ V 3 = z3 −
R
L

id + iq pω+
vd
L

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. (25) 

The control input can be written as 

. (26) 

Substituting (26) in (25) gives, 

€ 

˙ V 3 = −k3z3
2 + z3

˜ R 
L

id −
˜ L 
L

iq pω+ k3z3( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. (27) 

Finally, to achieve desire stability and to develop 
adaptive laws that can estimate uncertain parameters of the 
proposed system, we have 

, (28) 

The adaptive laws that compensate variations in the 
parameters can be designed by taking time derivative of 
(28) along (16), (23), (27) and using Assumption 2 

€ 

˙ V 4 = −k1z1
2 − k2z2

2 − k3z3
2 +

˜ R 
L

ˆ ˙ R 
r1

+ id
2 + iqz2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

+ ˜ b 
ˆ ˙ b 

r2
+ωz1 −

2 ˆ j 
3pλ f

ˆ b − k1( )ωz2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
+

3pλ f

2 j
z1z2

+ ˜ τ 
ˆ ˙ τ 
r3

+ z1 −
2 ˆ J 

3pλ f

ˆ b − k1( )z2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

+
˜ J 
J

ˆ ˙ J 
r4
− ˆ b − k1( )iqz2 + ˆ b ω+ ˆ τ − k1z1 + ˙ ω d( )z1

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

+
˜ L 
L

ˆ ˙ L 
r5

+ A2z2 − k3z3 + pωiq( )z3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
.

 (29) 

The estimator laws that estimate unknown perturbations 
in motor’s parameter and update the control functions are 
designed as follows: 

€ 

ˆ ˙ R = −r1 id
2 + iqz2( ) , (30) 

€ 

ˆ ˙ b = r2
2 ˆ J 

3pλ f

ˆ b − k1( )ωz2 − ωz1

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
, (31) 

€ 

ˆ ˙ τ = r3
2 ˆ J 

3pλ f

ˆ b − k1( )z2 − z1

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
, (32) 

€ 

ˆ ˙ J = r4
ˆ b − k1( )iqz2 −

ˆ b ω+ ˆ τ + ˙ ω d − k1z1( ){ } , (33) 

€ 

ˆ ˙ L = r5 z3 k3z3 + pωiq( ) − z2A2{ } , (34) 

where r1, r2, r3, r4 and r5 are adaptation gains. Substituting 
(30) to (34) in (29) gives 

€ 

˙ V 4 = −k1z1
2 − k2z2

2 − k3z3
2 +

3pλ f

2J
z1z2 − kpz2

2ξ2 . (35) 

LEMMA [23]: Let Q be  symmetric matrix and 

€ 

˙ V 4 ≤ z TQz is in related form of polynomial of degree two, 
then  is a negative definite function if Q is Hurwitz. 

Proof: The Lyapunov differential equation (35) can be 
expressed in the following from 

€ 

z T
∂∂ ˙ V 4( )
∂z∂zT z ≤

z1

z2

z3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

T −2k1
3pλ f

2J
0

3pλ f

2J
−2k2 0

0 0 −2k3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

z1

z2

z3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 (36) 

The Q matrix in (36) satisfies the two properties of negative 
definiteness i.e., the first and second minors are negative 
and positive, respectively. Thus, Q is negative definite if its 
determinant is negative 

  

. (37) 

If the feedback gains satisfy the inequality (37) and , 

will be negative definite. Thus, the system trajectories 
converge to zero asymptotically. 
 

Remark 1: The proposed adaptive backstepping controller 
has three remarkable features. Firstly, by comparing the 
feedback gains requirement in (37) with the gains in (12) (see 
Section 2), we can conclude that the proposed adaptive 
control needs small gains to achieve robustness against the 
parametric uncertainties and load torque disturbances. 
Secondly, the adaptive laws (30-34) update the control inputs 
with instantaneous values of variations in the parameters, 
thus, providing more accurate speed tracking. Thirdly, the 
performance improvement term in (22) enhances the 
convergence rate of iq current thus increasing the 
convergence of speed tracking as evidenced in (16). 

5. SIMULATION RESULTS 
In this section, comparative simulations are performed to 

verify the speed tracking performance of the two controllers 
designed in Section 3 and Section 4 

 

 
Fig. 1 – Control system block diagram. 

The block diagram for the simulation is shown in Fig. 1, 
which includes dynamical backstepping controller with the 



5 Nihad Ali et al. 13 
 

 

adaptive laws. The instantaneous values of all the uncertain 
parameters are estimated and updated in controller by the 
adaptive laws. For the sake of fair comparison, same gain 
values are selected for both the controllers according (37). 
The values of these gains and the adaptation gains are 
mentioned in Table 2. 

Table 2 
Designed feedback and adaptive gains 

Gain type Symbol Value 
k1 350 
k2 15000 Feedback gains 
k3 5000 
r1 0.000016 
r2 25000 
r3 0.0105 
r4 47 

Adaptive gains 

r5 85000 
 
The Initial conditions of the state variables are taken as 

zero. In addition, the initial values of all the designed 
estimators are assumed to be zero to observe the estimation 
performance. The desired speed trajectory is chosen as the 
exponential profile. The robustness property of both the 
controllers is analysed in detail under the influence of 
parametric uncertainties. All the model parameters are 
initially nominal which are taken from [14]. In Fig. 2, speed 
tracking performance of PMSM is shown where actual speed 
tracks the desired speed with high accuracy counteracting all 
the parametric perturbations. The sudden changes in 
parameters of PMSM for backstepping case drives the actual 
speed of the motor away from its reference trajectory thus 
causing severe steady-state error as shown in Fig. 3. To 
overcome this issue, higher gains are required. The adaptive 
control causes a undershoot of 1.2 rad/s and an overshoot of 
0.39 rad/s. However, it restores nominal performance within 
50 ms and 45 ms as shown in the zoomed view of Fig. 2 and 
is also indicated as proof in Remark 1.  

 

 
Fig. 2 – Speed tracking of PMSM for exponential reference profile. 

In Fig. 3, the tracking error between actual and desired 
speed of synchronous motor is demonstrated. 

 

 
Fig. 3 – Tracking error between actual and desired speed. 

It is quite clear that the proposed adaptive law 
accurately tracks the desired trajectory thus minimizing the 
tracking error in a very short duration of time as compared 
to the robust backstepping control. 

Figure 4 depicts the effectiveness of the adaptive law in 
load torque estimation. A constant sudden load of 1 Nm is 
applied to the motor between 0 and 2.5 s, then at time 
t = 2.5 s the load torque is increased by 200 %. Finally, at 
time t = 6 s the load torque is reduced by 100 %. It is very 
obvious that when the synchronous motor is suddenly 
subjected to several changes in the load torque, the adaptive 
algorithm exactly estimates those changes, thus the 
undesired behavior of synchronous motor is compensated.  

 

 
Fig. 4 – Load torque disturbances and their estimation. 

In Fig. 5, the deviant behavior of synchronous motor’s 
inertia is displayed. Initially rotor has 0.0008 kgm2 inertia 
between 0 and 2.5 s, 0.00145 kgm2 between 2.5 and 6 s. 
and 0.00127 kgm2 between 6 and 10 s. Thus, the adaptive 
law accurately predicts the irregular changes in inertia and 
achieves the nominal control performance. 

 

 
Fig. 5 – Perturbations in rotor inertia and estimation. 

Figure 6 illustrates the variant nature of damping 
coefficient. It is evident that in continuous mode of 
operation for a long time, the motor’s damping coefficient 
fluctuates around the nominal value which causes 
perturbation in system. So, the damping estimator precisely 
estimates the changes occurred and update the system 
parameters in control input. The zooms in Figs. 4–6 show 
the steady-state response of the adaptation laws, which 
concludes high estimation accuracy.  

 

 
Fig. 6 – Variations in damping and estimation. 
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In Figs. 7 and 8, efficiency of the proposed adaptive 
law is demonstrated for the uncertain behavior of armature 
resistance and inductance. In fact, the resistance and 
inductance are variant parameters, whose behavior change 
with continuous operation. Thus, to compensate these 
changes and to achieve the desired performances in the 
presence of perturbed parameters, an accurate adaptive law 
is investigated, whose effectiveness can be clearly seen in 
estimating the updated value of variant parameters. 

 

 
Fig. 7 – Perturbations in stator resistance and estimation. 

 

 
Fig. 8 – Perturbations in stator inductance and estimation. 

5. CONCLUSION 
In this paper, adaptive backstepping controller has been 

presented for a PMSM to control the angular speed under 
parametric perturbations. The controller and estimation 
laws are designed by defining Lyapunov function. Speed 
performance is independent of parametric uncertainties and 
unknown load torque dynamics. The problem of over- 
parametrization is eradicated since the designed adaptive 
parametric dynamics are equal to number of uncertain 
parameters. The impact of all the parametric variations and 
estimation is also studied thoroughly. It is noticed that load 
torque and inertia disturbances have very strong distorting 
impact on speed performance. The proposed control 
scheme restores nominal speed performance and 
compensates the effect of all the uncertainties and 
disturbances in PMSM dynamics. 

Received on May 9, 2018 
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