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Next location prediction has recently attracted much attention from researchers due to its application in various domains. Many 
variables usually affect moving objects, including time, distance, and user configuration. This makes it difficult to predict where 
moving items will go when these factors are considered. This research proposes a deep learning-based next-location prediction 
network (DL-NLocP) to increase the accuracy of next-location prediction. Initially, the datasets are pre-processed to enhance the 
data quality and employ term frequency-inverse document frequency (TF-IDF) with glove word embedding approaches to convert 
the textual data into real-valued vectors. Afterward, multi-head CNN extracts the vector data's temporal, location, and user 
behavior features. Finally, squeeze and excitation with the BiGRU network are developed to predict the following location in each 
trajectory with contextual information. The proposed DL-NLPN model was tested on the Ningbo AIS and Geolife dataset, and 
experimental results supported the model's validity. The proposed model consistently outperforms current state-of-the-art 
approaches by 93.75 % for Geolife and 94.75 % for Ningbo AIS on average accuracy@20. The results show that the proposed 
approach performs better in Next location prediction than the existing methods. 

1. INTRODUCTION 
Mobile devices have produced vast amounts of spatial 

trajectory data showing moving objects' movement due to 
the quick advancement of location tracking and mobile 
networking technologies [1]. The implementation of 
numerous cutting-edge applications is made possible by the 
capacity to forecast the future location of mobile items [2]. 
Real-time transportation systems, food delivery, taxi 
services, and advertising are a few examples of the numerous 
location-based services we use daily [3]. In these 
applications, next-location prediction is crucial. Predicting a 
website visitor's proximate location has garnered much 
scholarly attention recently [4] due to its potential 
significance for businesses and consumers. 

Typically, the upcoming position of a user is predicted by 
looking at their location history and seeing if specific 
patterns occur [5]. Nowadays, path planning, location 
sharing, location query, and other location-based services are 
the key offerings. Position prediction uses the user's 
historical trajectory data to forecast their next position with 
the highest likelihood [6]. Next location prediction, which 
involves determining a user's likely following location based 
on a previous GPS trace, is crucial for many mobile 
computing applications [7]. For instance, predicting the 
locations of various users is essential in ride-sharing systems 
to identify user groups with nearby destinations [8].  

Neural networks have been effectively applied to 
sequence modeling and next-location prediction in several 
application domains [9]. A deep learning strategy should be 
suggested to forecast the following location while 
considering the topology between locations. Moreover, the 
sparsity problem is resolved by applying embedding 
techniques [10]. Though generic locational area prediction is 
helpful, people typically do not need highly accurate 
locations. Therefore, it might not be enough for noisy text 
from social media. This paper proposes a deep learning-
based next-location prediction network (DL-NLPN).  

The research outline is organized as follows: Section 2 
includes relevant work. Section 3 explains the proposed 
design. Section 4 discusses the experiment’s results and 
discussion. Section 5 covers future work and the conclusion. 

2. LITERATURE SURVEY 
Several decades have been spent on location prediction, 

although most research has concentrated on user location 
prediction. The corresponding location prediction research f 
will be introduced in the next section. 

In 2019, Sassi A. et al. [11] introduced a deep neural 
network-based machine learning model that uses 
convolutional neural networks to improve input data 
representation through embedding techniques. They created 
a position embedding technique known as loc2vec to raise 
the quality of the input position representation. Additionally, 
they demonstrate that the loc2vec-CNN model outperforms 
other models when transfer learning is added. 

Zhang R. et al. [12] presented a Multi-task Model for 
Location prediction in 2019. The sequential and temporal 
properties between the locations of the moving objects are 
recovered by LSTM, a method proposed after CNN has 
extracted the spatial features. The suggested model 
outperforms the prior techniques based on accuracy, recall, 
precision, and f1-score, according to tests conducted on real 
datasets. 

Qian T. et al. (2020) [13] proposed an internal, external 
trajectory dependency in a cooperative attention-based 
position prediction network called CABIN. The suggested 
approach outperforms existing RNN-based techniques 
regarding efficiency and prediction accuracy, as shown by 
experimental findings on real-world datasets. According to 
experimental results, the proposed technique surpasses the 
latest methods. 

Zhang X. et al. [14] suggested a Semantic and Attention 
Spatio-temporal Recurrent method (SASRM) in 2020 to 
predict the location of anything. To input semantic vectors 
into the model, the SASRM first proposed a way to encode 
them and concatenate vectors. The suggested method 
performs with better accuracy than several cutting-edge 
models.  

To predict position, Wang S. et al. (2021) [15] presented 
the spatial-temporal self-attention network (STSAN), which 
combines self-attention and spatial-temporal data. To find 
the dynamic trajectory representation of users, they 
developed a trajectory attention module in STSAN. The 
studies indicate that spatial-temporal information can 
significantly enhance the method's functionality. Using the 
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New York City dataset as a baseline, our technique STSAN 
achieves improvements of approximately 39.8 % Acc@1 
and 4.4 % APR [16,17]. 

3. PROBLEM DEFINITION 
This section summarizes the main concepts discussed in 

this article and explains some key ideas for the following 
debate. The study aims to predict a user's following location 
using trajectory data. 
Definition 1 (Trajectory): A trajectory can be defined as the 
chronological order of a user's locations during a given 
duration. Using user U as an example, let's say that 𝑇	𝑇! =
{𝑤"! , 𝑤#! , 𝑤$! , … , 𝑤%!}	is each record 𝑤&' with three attributes 
(U, 𝑘&, 𝑡&), where U is the user ID, 𝑡& the timestamp, and 
𝑘&	and	the place that user U visited time 𝑡&. 
Definition 2 (POI): A point of interest (POI) is a location in a 
coordinate system that has both global position information 
and location identification (𝜈) (latitude and longitude 
coordinates). 
Definition 3 (Semantic): The semantic 𝜉 is a term used to 
describe why a person visits a stay point. The semantic 𝜉 is 
found by aligning the stay point with the k-nearest POI. Types 
of POI make up 𝜉's dimension. Each consecutive stay point 
will search for each k-nearest POI as semantic 𝑆( =
3𝑆(", 𝑆(#, 𝑆($, … , 𝑆('	4. 
Goal (Next location prediction): Given user U's trajectory 
T, our objective is to use the trajectory data to learn the next 
location 𝑘%)"	. 

4. PROPOSED METHODOLOGY 
In this section, DL-NLPN is proposed. The proposed 

method is categorized into four phases: 1) Data 
preprocessing, 2) Word embedding, 3) Feature extraction, 
and 4) location prediction. Initially, the datasets are pre-
processed, and TF-IDF with Glove word embedding 
approaches are employed to convert the textual data into 
real-valued vectors. Afterward, Multihead CNN extracts 
temporal, location, and user behavior features from the 
vector data. Finally, squeeze and excitation with the BiGRU 
network are developed to predict the following location in 
each trajectory with contextual information. The overall 
workflow is shown in Fig 1. 

 
Fig. 1 – Overall block of DL-NLPN methodology. 

4.1 DATA PREPROCESSING 
This step is essential because it converts the trajectory data 

into a consistent format, which helps the classifiers perform 
better. Preprocessing is done on the data to eliminate 
inconsistent, noisy, and incomplete data. All punctuation and 
spaces are eliminated from the review text during the 

preparation stage. The following tasks are part of data 
preprocessing. 
Tokenization: Tokens are blocks of characters used in text 
data. After being divided into tokens, the papers are utilized 
for additional processing. 
Data Cleaning: Analysis can proceed to obtain an 
appropriate text review from the retrieved data. The best 
results are obtained by cleaning the crawled data by 
removing all special characters (like: ":/.,'#$*^&-"). The 
crawled content should be cleaned and copied into a CSV 
file. 

4.2 WORD EMBEDDING 
TF-IDF: Word embedding weighted averages have been 
shown to enhance unsupervised natural language processing 
(NLP) tasks, particularly next-location performance, 

 𝑆+,- = 𝑇. × log 9
/
+!
:.  (1) 

The term's weight value 𝑡 is represented by 𝑆 the 
document 𝑙 denoting the number of records, and it is defined 
as 𝑄, and	𝑙. , 𝑇. indicating the term frequency. 
Global vectors (GloVe): Word2vec extracts embeddings 
from text documents. By pre-training the GloVe word 
embedding model using 1.2 million vocabulary terms, 27 
billion tokens, and 2 billion tweets, a 200-dimensional vector 
word matrix was produced. The proposed model was 
evaluated using TF-IDF and GloVe models. 

Word vectors of 𝑙 dimension are created for each input k-
word expressed as 𝑇	(𝑡", 𝑡", … , 𝑡%). The dimensions space of 
each word will therefore be, 𝐺+. Each input text is then 
denoted as, 𝐺%×+, and the input text matrix generation is 
denoted by 𝑇 =	 (𝑡", 𝑡", … , 𝑡%) ∈ 𝐺%×+ After concatenating 
⊕	with word embedding, the features vector 𝑘1 for the 
document is displayed as follows: 

 𝑘1 = 𝑠"⊕𝑠#⊕𝑠$…⊕ 𝑠'2"⊕.	 (2) 

The proposed approach combines TF-IDF weighing with 
pre-trained Glove word embedding to enhance text 
representation, 

 𝑌3 = 𝑆+,- × 𝑘1, (3) 

where the document's TF-IDF weighting is represented by, 
𝑆+,-	and the word vector matrix, 𝑘1 is one that Glove 
acquired.  

4.3 FEATURE EXTRACTION  
A multi-head convolutional neural network (MH-CNN) is 

utilized to extract the temporal and location-based features 
of the user after vector representation. The architectural 
layout of the proposed method is depicted in Fig. 2. The 
definition of a convolution is as follows: 

 𝑄 = ∑ ∑ 𝑘(𝑝, 𝑞)𝑔(𝑝, 𝑞)4
56"

7
(6" ,  (4) 

where 𝑄 represents the output of 𝑘(𝑝, 𝑞) and 𝑔(𝑝, 𝑞). With 
length 𝐿 and width 𝑊, respectively, as the filters. Utilizing 
one-dimensional convolutions, temporal characteristics from 
trajectory data are processed. Let us assume that the input 
signal 𝜌 of the multivariate time series data is represented by 
the function 𝜌 ∈ ℤ8×9, where 𝐸	𝑎𝑛𝑑	𝑅 denote the time steps 
and size of features set, respectively. Next, the following 
expression can be used to represent the 𝑏-:	 feature map at 
the 𝑙-:	layer of the ℎ-: head of the multi-head CNN: 
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 ρ+,;
( = S𝑡+,; + ∑ ∑ 𝑧+,;

(5<"
56" 𝜌(+2")(

&)5,:9
(6" V∀:= 1,2,3.  (5) 

where 𝑡+,;	denotes the feature map's bias, 𝑘: represents the 
kernel size, ℎ-: head, 𝑧+,;

(5 and denotes the matrix weight at 
layer 𝑙	 , whereas ρ stands for feature maps index at (𝑙 − 1)-: 
layer. On the other hand, in convolution networks, this 
component affects the quantity of attributes. Equation (6) 
determines how many attributes are present in each layer of 
a conventional MHCNN, 

 𝐺 = 𝑔? ∗ 𝑔@ ∗ 𝑣 + 𝑏𝑖𝑎𝑠, (6) 

where 𝑔?	denotes the number of filters, 𝑔@ the filter's size, 
and 𝑣 the final dimension of the resultant vectors obtained 
from the layer that came before it. A nonlinear function is 
applied 𝛿 to 𝜌+,;&  following each convolutional layer to lessen 
the network's vanishing explosion/gradient challenge, 

 𝑋;: = 𝛿(𝜌+,;& ), (7)  

where the ReLU activation function is denoted by 𝛿, the 
feature map 𝑋;: is passed to the ℎ-: head's batch normalizing 
layer ℑ, 

 𝑋ℕ: = ℑ(𝑋;:). (8) 

Following transmission to the convolutional layer in the 
second convolutional block, the batch normalization layer's 
output yields the feature set Ϝ, which can be written as 
follows: 

 Ϝ+,;: = 𝛿c𝑡+,; + 𝑧<"
: × 𝑋ℕ:d,	 (9) 

where 𝑡 is the ℎ-: filter, which has a kernel of the model's 
size 1 × 𝑔@. To decrease the size of the output map Ϝ+,;: . The 
learned features Ϝ+,; of the ℎ-: head, are then flattened into a 
single long vector ℚ. A vector ℋ is created by concatenating 
the feature vector ℚ of each ℎ-:head, 

 ℋ = ℂ(ℚ&
:#), (10) 

where the concatenation function is represented by ℂ. The 
retrieved features are loaded into a weighted word 
embedding for word representation. 

4.4 LOCATION PREDICTION VIA SE-GRU 
This section uses a deep learning-based multiple-

classification algorithm that can effectively predict the 
following location by combining heterogeneous features. 
Bidirectional Gated Recurrent Unit 

The suggested model feeds the word vectors from the 
trajectory data into the Bi-GRU layer. Each neuron contains 
two gated recurrent units with opposing training directions, 
which make up a bidirectional gated recurrent unit (BiGRU).  

After calculating the passing word vectors, GRU produces 
a vector with fixed dimensions. Here is the detailed design. 
From the equation 𝑓'iii⃗  denoting the forward and 𝑓'i⃖ii reverse 
layers, 

 𝑓'iii⃗ = 𝐺𝑅𝑈	c𝑃' , 𝑓'2"iiiiiiii⃗ d, (11) 

 𝑓'i⃖ii = 𝐺𝑅𝑈	c𝑃' , 𝑓'2"i⃖iiiiiiid, (12) 

 𝑃' = 𝑧'𝑓'iii⃗ + 𝑟'𝑓'i⃖ii + 𝑞', (13) 

Four computational components go into GRU. To decide 
which data to discard earlier, GRU first utilizes a reset gate, 

 𝑙' = 𝜎(𝑆+	𝑃' +𝐾+𝑓'2"	 + 𝑞+	). (14) 

Next, GRU uses the update gate to update the data that is 
currently available; 

 𝑐' = 𝜎(𝑆?	𝑃' +𝐾+𝑓'2"	 + 𝑞+	). (15) 

Here,	𝑞 is the bias 𝑆, and K is the weight information: 

 𝑓r' = tan( 𝑆.	𝑃' +𝐾.𝑙'⨀𝑓'2"	 + 𝑞+	). (16) 

 
Fig 2 – Architecture of proposed MH-SE BiGRU network. 

Lastly, the output from the outcomes above is computed 
by the GRU: 

 GRU(𝑃' , 𝑓'2"	) = (1 − 𝑐')⨀𝑓'2"	 + 𝑐'𝑓r'. (17) 

𝑃'	 is the network's input value at that precise point in the 
equations above. The final state of the hidden layer is given 
as 𝑓'2"	. The Hadamard product is ⨀. 𝜎 represents the 
sigmoid function. In the equation, the terms S𝑆+	, 𝐾+, 𝑧'	and 
𝑟' stands for weights. As a result, the performance of the 
GRU network can be enhanced by learning discriminative 
features from the input data. 
Squeeze and excitation module (SE) 

By modeling the relationships between channels, the SE 
module is used to boost the representational capacity of the 
network. As a result, the network can enhance optimal 
features and execute feature recalibration. Nevertheless, SE 
is a straightforward and effective computational architectural 
unit. A statistic is produced by compressing S through its 
spatial dimensions U × N. The 𝑔-: element of 𝐽 is then 
calculated as follows: 

 𝐽< = 𝑇@5(𝑆) =
"

!×B
∑ ∑ 𝑆(𝑎, 𝑏)B

;6"
!
&6" , (18) 

where U	and	N denote the height and breadth of the input 
feature map and 𝑇@5	is the squeeze function. To identify 
channel-wise dependencies, the excite operation receives the 
aggregated data from the squeeze operation, 

 ℎ = 𝑇C'(𝐽, 𝑈) = σc𝑣(𝐽, 𝑈)d = σ(𝑈#δ(𝑈"𝐽)).  (19) 

where δ stands for the ReLU activation function and σ for 
the Sigmoid function. The gating mechanism is parametrized 
using two non-linear, fully connected layers to make the 
model more straightforward and more applicable. By 
rescaling S with activations s, the block's final output is 
generated as follows: 

 𝑎<| = 𝑇@?&+C(𝑆D , 𝑃D) = 𝑆D , 𝑃D (20) 
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where 𝑇@?&+C(𝑆D , 𝑃D) show the multiplication between the 
scalar variables channel-wise. 𝑃D and feature map 𝑆D ∈
𝐷!×B and 𝐴r = [𝑎"|,𝑎"|,…𝑎D|	]. 

5. RESULT AND DISCUSSION 
This section contains tests to compare the proposed 

model's performance with current approaches and assess the 
model's correctness under different conditions. F1-score, 
precision, accuracy, and recall are utilized to evaluate the 
proposed method and tested using the two datasets. Our 
model is built using MATLAB 2020b and Python 3.7, and 
our experiments are carried out on a Windows 11 PC with an 
Intel(R) Core (TM) i5-1335U CPU operating at 1.30 GHz (8 
CPUs) and 8 GB of main memory. 

 5.1 DATASET DESCRIPTION 
The Geolife dataset and the Ningbo AIS trajectory data 

[12] are the foundation for the suggested method's tests. 
Geolife dataset: For more than five years, 182 users in 
Beijing participated in the Geolife project and provided the 
Geolife dataset (April 2007 to August 2012). With the time 
and distance thresholds for stay point detection set at 5 
minutes and 200 meters, respectively, we can acquire 43,442 
stay points in total. 182 people are down to 50, and 
eliminating those with stay point records below 200 will 
obtain 35,960 stay points. Ultimately, 23,775 trajectory 
sequences are obtained.  
Ningbo AIS trajectory Dataset: This dataset compiles all 
ship data acquired by Ningbo Port AIS. Each entry includes 
the ship ID, GPS location, and timestamp. The collecting 
period is 2015.03.01 to 2015.03.31. Due to the massive 
volume of data, there is extensive coverage and a quick data-
collecting frequency.  

5.2 EVALUATION METRICS 
The suggested method assesses the next location 

prediction performance using five metrics: the hitting ratio, 
precision, recall accuracy, and NDCN. 
Hitting ratio @N: The hitting ratio calculates the proportion 
of test trajectories for which the top-k result list correctly 
recovers the ground-truth position. 
Accuracy: Its definition is the proportion of accurate 
forecasts to all successful predictions, 

 𝐴𝑐𝑐@B =
?FGGC?-	(GCHI?-IF%

-F-&+	-C@-I%<	@&J(+C@
. (21) 

Recall@N and Precision@N: It is computed as the 
proportion of instances where the actual visited location was 
discovered inside the top N most probable locations within 
the ranking list. 

 Recall@N = "
|L|
∑ ∑ M$,&

',&()⋂M$,&*+"

B
O,
(6"

|L|
'6" , (22) 

 Precision@N = "
|L|
∑ ∑ M$,&

',&()⋂M$,&*+"

M$,&*+"
O,
(6"

|L|
'6" . (23) 

Here, 𝑌',(1I@ it represents the locations a user has visited and 
𝑆- the duration of each user's test sequence. 
Normalized discounted cumulative gain (NDCG): The 
discounted cumulative gain (DCG) divided by the NDCG is 
used to determine the prediction vector's quality (IDCG), 

 NDCG	 = 	 PQR@S
TPQR@S

,  where 
 DCG@N = ∑ (2GC+# − 1 ) log#(&)")⁄B

&6" .  (24) 

Mean reciprocal rank (MRR): It determines the prediction 
vector's average rank reciprocal or the point at which the first 
pertinent entry was found, 

 𝑀99 =
"
B
∑ "

UVWX#
B
&6" ,  (25) 

where 𝑁 stands for the number of test samples ran𝑘& and 
denotes the rank of the ground truth location. 

5.3 COMPARATIVE ANALYSIS 
We evaluate the proposed DL-based NLocP by 

contrasting it with the MMLoc [12], CABIN [13], SASRM 
[14], and STSAN [15] techniques currently in use. 
Employing the Geolife and Ningbo AIS datasets, we 
evaluate the suggested method against other approaches with 
well-tuned parameters based on hitting ratio, precision, recall 
accuracy, and NDCN.  

 
(a) 

 
(b) 

Fig 3– Comparison of hitting ratio (a) Geolife (b) Ningbo AIS. 

The hitting ratios of the two datasets are compared in 
Fig. 3 between the proposed DL-NLocP method and the 
current MMLoc [12], CABIN [13], SASRM [14], and 
STSAN [15] methods using varying N values. As illustrated 
in Fig. 3(a) for the Geolife dataset, the proposed approach 
achieves a hitting ratio of 0.95 percent for N = 20 in contrast 
to the existing methods. Compared to existing approaches, 
the suggested method produces a 0.97 percent hitting ratio 
when k = 25, which is depicted in Fig. 3(b), which displays 
the hitting ratio of the Ningbo AIS dataset. Of the two 
datasets, the Ningbo AIS dataset exhibits superior hitting. 

Figure 4 compares the accuracy, recall, NDCG, and 
precision attained on the Geolife dataset using the suggested 
and current methods. The precision of the proposed DL-
NLocP is compared with the existing MMLoc [12], CABIN 
[13], SASRM [14], and STSAN [15] methods in Fig. 4(a). 
The recall of the proposed approach is shown in Fig. 4(b). 
When N  =20, the recall of the existing technique is 0.59, 
0.51, 0.75, and MMLoc, CABIN, SASRM, and STSAN 
methods are 0.52, 0.89, and 0.89 for the suggested method, 
which is comparatively higher than the prior studies. The 
comparison of NDCG between MMLoc, CABIN, SASRM, 
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STSAN, and DL-NLocP is shown in Fig. 4(c). The 
comparison of NDCG between MMLoc, CABIN, SASRM, 
STSAN, and DL-NLocP is demonstrated in Fig. 4(c), and the 
accuracy for the proposed method is depicted in Fig. 4(d).  

 

 
Fig 4 – Comparative analysis of (a) Precision, (b) Recall, (c) NDGC;  

(d) Accuracy using the Geolife dataset. 

Table 1 depicts the experimental findings on mean 
reciprocal rank (MRR) for the Geolife dataset. Compared to 
other current approaches, the suggested model performs 
better. Based on the analysis, the proposed approach 
achieves a relative increase in performance of 0.90 percent 
MRR@25 in the Geolife dataset, surpassing all other 
available methods.  

Table 1 
Performance evaluation of MRR for Geolife dataset 

MRR MMLoc 
[12]  

CABIN 
[13] 

SASRM 
[14] 

STSAN 
[15] 

Proposed 
DL-

NLocP 
MRR@5 0.37 0.44 0.46 0.501 0.56 

MRR@10 0.408 0.49 0.51 0.58 0.68 
MRR@15 0.46 0.56 0.59 0.63 0.75 
MRR@20 0.53 0.61 0.65 0.74 0.83 
MRR@25 0.56 0.67 0.76 0.85 0.90 

Table 2 
Performance evaluation of MRR for Ningbo AIS dataset 

MRR MMLoc 
[12]  

CABIN 
[13] 

SASRM 
[14] 

STSAN 
[15] 

Proposed 
DL-

NLocP 
MRR@5 0.52 0.59 0.63 0.66 0.75 

MRR@10 0.56 0.61 0.69 0.72 0.79 
MRR@15 0.57 0.65 0.74 0.77 0.86 
MRR@20 0.65 0.67 0.79 0.85 0.90 
MRR@25 0.69 0.73 0.86 0.89 0.93 
 

 
Fig 5 – Comparative analysis of (a) Precision (b) Recall (c) NDGC (d) 

Accuracy using Ningbo AIS dataset. 

Figure 5 (a) shows the precision comparison with different 
N sizes. The suggested method obtains a recall of 0.93 % 
when N is 5, which is comparatively high compared to the 
current techniques. Figure 5(b) shows that, in comparison to 
current methodologies, the recall of the suggested approach 
grows as the N size increases.  

Figure 5 (c) shows that the suggested method's NDCG is 
higher than the existing approaches. Figure 5(d) shows that 
the proposed approach is more accurate than the current 
model, with 96.78 % accuracy. The recommended method 
outperforms STSAN, SASRM, CABIN, and MMLoc by 
1.25 %, 3.12 %, 5.66 %, and 7.5 %, respectively. Table 2 
depicts the suggested method surpassing existing methods, 
achieving 0.93 % on MRR@25 for the Ningbo AIS dataset.  

Table 3 
Prediction time Comparison results 

Techniques Geolife  Ningbo AIS 
Time (s) Time (s) 

MMLoc  16.8 18.1 
CABIN 14.8 17.6 
SASRM 12.7 14.5 
STSAN 10.74 12.1 

Proposed DL-NLocP 7.2 8.15 
 
The prediction time of the different datasets compared to 

the proposed and existing methods is displayed in Table 3. 
Regarding prediction time, the proposed DL-NLocP performs 
noticeably better than current techniques for both datasets. The 
proposed DL-NLocP is 19.5 %, 14.5 %, 10.8 %, and 7.6% less 
effective than the current MMLoc, CABIN, STSAN, and 
SASRM, respectively, for the Geolife dataset. Compared to 
the MMLoc, CABIN, STSAN, and SASRM, the proposed 
method is 14.5 %, 12.9 %, 8.45 %, and 5.4 % lower for the 
Ningbo AIS dataset. According to the comparison, the Geolife 
dataset outperforms the Ningbo AIS dataset in terms of 
processing times. 

6. CONCLUSIONS 
This paper proposed a DL-NLocP Network to increase the 

accuracy of the next location prediction. Initially, the datasets 
are pre-processed to enhance the data quality and employ term 
frequency-inverse document frequency (TF-IDF) with Glove 
word embedding approaches to convert the textual data into 
real-valued vectors. Afterward, Multihead CNN extracts 
temporal, location, and user behavior features from the vector 
data. Finally, Squeeze and Excitation with the BiGRU 
network are developed to predict the following location in 
each trajectory with contextual information. The proposed 
DL-NLPN model was tested on the Ningbo AIS and Geolife 
dataset, and experimental results supported the model's 
validity. On average, the accuracy@20 of the proposed model 
is 93.75 % higher for Geolife and 94.75 % higher for Ningbo 
AIS than the state-of-the-art methods. The findings 
demonstrate that the proposed method outperforms the current 
techniques in predicting the following location. The advantage 
of the proposed method is the integration of Multihead CNN 
and Squeeze and Excitation BiGRU, which enables the model 
to extract and utilize temporal, spatial, and user-behavioral 
features effectively by enhancing prediction performance. The 
limitation of the proposed DL-NLocP method is that it does 
not integrate data from multiple modalities and is slightly 
computationally complex. These limitations will be 
considered in future work to extend our proposed system. 

The significant contribution of the proposed method is: 
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– This research introduced a novel following next-
location prediction network (DL-NLocP) for next-
location prediction. 

– The proposed framework devises the ideology from 
frequency-inverse document frequency (TF-IDF) with 
Glove word embedding approaches to convert the 
textual data into real-valued vectors. 

– Moreover, the Multihead CNN technique improves the 
precision of location prediction by extracting temporal, 
location, user behavior characteristics, and user 
preferences into a unified framework.  

– The Squeeze and Excitation with the BiGRU network 
are developed to predict the following location in each 
trajectory. 

– According to experimental results, the proposed model's 
accuracy is 93.75% for Geolife and 94.75% for the 
Ningbo AIS dataset, which is higher than the existing 
techniques.  
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