
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 
Vol. 70, 2, pp. 281–286, Bucarest, 2024 
 

1,*Department of Electronics and Communication Engineering, Government College of Technology, Coimbatore, Tamil Nadu 641013 India. 
(Correspondence)  
2 Department of Electronics and Communication Engineering, PSN College of Engineering and Technology, Tirunelveli – 627152, India. 
3 Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology, Tirunelveli, India. 
4 Centre for Computational Imaging and Machine Vision, Department of Electronics and Communication Engineering, Sri Eshwar College 
of Engineering, Coimbatore – 641 202, Tamil Nadu, India. 
Emails: thirugnanam_g@gct.ac.in, akhilanappathurai@psncet.ac.in, jasmine@psncet.ac.in, : muthukumaran.n@sece.ac.in 
 
  DOI: 10.59277/RRST-EE.2025.70.2.22 

DGN-TBMF: DUAL GENERATOR NETWORK BASED ON TRI-BRAIN 
MODAL FUSION FOR ACCURATE BRAIN DISEASE DIAGNOSIS 

THIRU GNANAM 1, *, AHILAN APPATHURAI 2, JASMINE GNANAMALAR 3, MUTHUKUMARAN NARAYANAPERUMAL4  

Keywords: Brain disease; Image fusion; Tri-modals; Deep learning; Fusion rules; Discrete Shearlet transform.  

Medical image fusion techniques are frequently used in a variety of applications. This fusion technology enables specialists to access 
images that incorporate anatomical and physiological data. It has been used in many clinical settings to fuse medical images of the brain 
for the diagnosis of brain diseases. Several methods have been proposed to fuse medical brain images, but these models need to be 
enhanced in terms of efficiency. This work employs a novel dual generator network-based tri-brain modal fusion (DGN-TBMF) 
framework to accurately predict brain diseases using tri-modality images, including MRI, CT, and PET. Initially, the gathered MRI and 
CT images are pre-processed using a scalable range-based adaptive bilateral (SCRAB) filter to reduce the noise artifacts. PET images 
are split into high and low-frequency components by the discrete Shearlet transform (DST). The proposed DGN-TBMF approach 
comprises two generators and a detector module. The first Generator consists of dilated convolutional layers for extracting the relevant 
grey matter densities and cortical thickness from MRI and CT images. Similarly, the second generator extracts the relevant voxel 
intensities from PET images. The image fusion is performed using four fusion rules, and these images are taken as input to the deep 
learning-based detector for accurately detecting brain abnormalities. According to the experimental results, the proposed DGN-TBMF 
performed effectively in both quantitative and qualitative analyses, yielding respective values. The accuracy achieved by the proposed 
DGN-TBMF network is 99.25 % for dataset-1 and 99.04 % for dataset-2.

1. INTRODUCTION 
The brain is the primary component of the neurological 

system, which controls all the functions of the human body. It 
is one of the most complex organs in the human body and is 
covered by the skull [1]. Furthermore, it can spread to other 
body organs and affect human activities. Medical image fusion 
(MIF) aims to extract as much important data as possible from 
raw images to maximize the use of medical images and assist 
clinicians with image processing [2]. The MIF method is 
gaining significance in medical diagnosis and therapy. Multi-
modal MIF techniques integrate additional data from multiple 
raw images to generate a fused image for viewing, which helps 
doctors make better decisions for various purposes and 
facilitates the early diagnosis of brain diseases [3,4]. 

Image fusion guided in disease prognosis has been 
attempted in real-world applications to assist clinicians with 
making judgments due to the subjectivity of human 
interpretation of medical images [5]. The main objective of 
multi-modality MIF is to combine the complementary 
information derived from many registered source images to 
produce higher-quality data [6]. PET images with molecular 
imaging techniques offer excellent specificity but limited 
resolution [7]. NSCT requires less processing than other 
decomposition algorithms [8,27]. The single IHS fusion 
technique involves replacing a PET image, a low-resolution 
intensity factor in IHS space, with grey-level MRI images for 
the detection of different brain diseases [9, 10]. Several 
advantages distinguish the NSST method from other sparse 
decomposition methods. The NSST algorithm removes all 
artifacts from medical images while retaining the unique soft 
tissue characteristics. To address the issue of the starting 
weight not applying to medical images, the initial weight is 
expressed as high-frequency and low-frequency coefficients 
in the multiscale domain [11, 28]. In recent years, several 
machine learning [12] and deep learning [13] techniques have 
been employed in the identification of brain diseases using 

MRI images [14]. This work presents a novel dual generator 
network-based tri-brain modal fusion (DGN-TBMF) model 
for accurately predicting brain disease in its early stages using 
tri-modality images, including MRI, CT, and PET. 

The remaining work has been scheduled as follows in 
advance: section 2 provides an overview of the literature on 
brain tri-modality image fusion techniques; section 3 
delineates the inclusive work of the suggested DGN-TBMF 
method; section 4 recounts the experimental findings and 
their analysis; and section 5 concludes with 
recommendations for future research. 

2. LITERATURE SURVEY 
Medical multimodality, classified by computer-based 

techniques, has allowed researchers to develop various 
methods for evaluating brain abnormalities. The 
development of various artificial intelligence techniques and 
brain disease diagnosis has become simpler in recent years. 

In 2021, Li et al. [15] designed a deep learning-based 
multi-modal medical image to achieve multi-modal MIF 
based on MRI, CT, and SPECT images. It can be applied to 
multi-modal MIF scenarios and overcomes the limitation of 
processing on a single page. In 2022, Alseelawi et al. [16] 
suggested a low-cost multimodal MIF method based on an 
NSCT hybrid. A neural network was used in this method to 
generate a weight map based on the movement of pixels in 
two or more multi-modal images, such as MRI, CT, and PET 
scans. In 2021, Kaur et al. [17] devised a deep learning 
approach for multi-modal image fusion based on multi-
objective differential evolution. The Inception algorithm was 
used to extract features from raw images. The multi-
objective differential progression was utilized to select the 
optimal features.  

In 2021, Zeyu et al. [18] designed a multimodal MIF 
approach based on NSCT and CNN. The NSCT was utilized 
to enhance fusion solutions, and a CNN was employed to 
extract features from various frequency subbands, creating 
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decision maps and improving the quality of fused images. 
Then, a perceptual high-frequency CNN (PHF-CNN) is 
utilized to observe and choose high-frequency coefficients. 
The proposed approach achieves an overall accuracy of 
95.62%. In 2021, Dinh et al. [19] proposed a fusion of 
multimodal medical images. The three-scale decomposition 
(TSD) extracts the base and detail layers from the input 
images. Second, the local energy function via the Kirsch 
compass operator approach was utilized to fuse detailed 
layers, preserving critical details in the fused image.  

In 2020, Zhang et al. [20] developed an image fusion 
framework with a convolutional neural network (IFCNN). 
The image fusion techniques extract essential visual 
information from many input images using two 
convolutional layers. The informative fused image was 
formed by recreating the combined features via two 
convolutional layers. In 2020, Tan et al. [21] proposed a deep 
learning-based NSST method for multi-modal MIF using 
boundary-measured pulse-coupled neural networks (PCNN) 
and energy attribute (EA) fusion algorithms. The key benefit 
of the two fusion procedures was used at different scales. 

In 2020, Wang et al. [22] devised a MIF technique based 
on CNN. It integrates the pixel activity information of source 
images using a trained Siamese convolutional network. A 
contrast pyramid was used to divide the source image. The 
dissimilar spatial frequency bands and a weighted fusion 
procedure merged the source images. In 2019, Xia et al. [23] 
proposed a multi-scale transformation and a DCNN-based 
image fusion method for multimodal medical images. The 
Gaussian and Gauss-Laplace filters divide the original image 
into multiple images. This fusion technique achieves 62.76% 
greater accuracy than CT and MR images. In 2018, 
Rajalingam et al. [24] proposed a Siamese CNN to create 
weight maps combining pixel moment data from various 
medical multi-modalities. Multimodal fusion strategies yield 
the best-fused images, the lowest processing time, and the 
most accurate medical image representation. 

According to the literature review above, numerous 
researchers have reported that image fusion can improve the 
quality of medical images. However, existing works are 
unable to overcome the limitations of MRI and CT image 
fusion due to the inefficiency of the high-frequency 
component, resulting in the loss of critical information, such 
as edges, in the fused output images [29]. To overcome these 
issues, this research work incorporates multimodal images, 
such as MRI, CT, and PET scans, to identify brain 
abnormalities using deep learning networks.  

3. PROPOSED METHODOLOGY 
This section presents a novel DGN-TBMF to merge 

medical tri-modality images and identifying brain diseases in 
their early stages. Figure 1 illustrates the overall workflow 
of the proposed model. 

3.1 DATASET DESCRIPTION  
This work uses two databases, namely OASIS and 

MIDAS, due to their broad dataset availability. Different 
OASIS datasets are available, and the OASIS-3 dataset is 
used in this research. 1378 participants’ pictures from 
various medical modalities, including MRI, PET, and CT 
scans, are gathered and stored in the OASIS dataset. 

 
Fig. 1 – The schematic representation of the proposed model. 

The MIDAS dataset, a rigid multimodality of brain scans, 
contains 110 images of patients' brains from various 
modalities under the retrospective image registration 
evaluation (RIRE) initiative. Table 1 illustrates the dataset 
description.  

Table 1 

Dataset description of OASIS and MIDAS datasets. 
S. 
No 

Datasets Subjects Multi-modality images Total 
MRI CT PET 

1 OASIS 
dataset 

1379 2842 1472 2157 7850 

2 MIDAS 
dataset 

110 1210 1320 990 3520 

    Total 1489 4052 2792 3147 11370 

3.2 DATA PRE-PROCESSING 
Pre-processing input data is crucial to reducing noise and 

improving subtle changes in medical images. Bilateral filters 
are used for noise reduction, non-linear filtering, leveling, 
and edge-preserving filtering. In noisy images, the bilateral 
filter fails to capture whole data about edge differences 
significantly, which is considered a major flaw. Therefore, 
the SCRAB filter is used to address this problem: 

𝑧!(𝑝, 𝑥, 𝑞) = αexp(− "
#
.$|&(()*&(+)*,(+)|$

-!
)#/ + β,    (1) 

𝑞(𝑥) = 23𝑓(𝑥) −mean8Ω.:3|𝑝 − 𝑞| ≤ 𝑐,
												0																										otherwise,

        (2) 

where Ω. describes the pixel set of (2𝑛 + 1) ∗ (2𝑛 + 1) 
pixel window here 𝑛 = 2, α	and	β are defined as positive 
parameters, Ω. is the mean value, 𝑐 denotes stable-variable 
and 𝑞(𝑥) is a range-based functions. The parameters utilized 
to control 𝑧! are the scaling factor	σ!, the linear constant 
coefficient	α = 2	and	β = 1. From these three, σ! ensures 
the increased frequency of photometric similarity between a 
pixel's center (𝑥) and its adjacent (𝑝). 

3.3 PET IMAGE DECOMPOSITION 
The Shearlet transform produced the images into a low-

frequency sub-band, which mostly mirrored the source 
images with dark qualities and layouts. The sub-band with 
low-frequency coefficients represents contour details, and it 
is liable for the local association between the input images of 
the adjacent coefficients: 

𝐿&!/(𝑎, 𝑏) = 2
𝐿0(𝑎, 𝑏),			if	𝐸1"(𝑎, 𝑏) > 𝐸1#(𝑎, 𝑏),

∑𝑈, 𝑉( 𝑥 + 𝑥2, 𝑦 + 𝑦′).
     (3) 

Equation (3) aids in determining the relationship between 
low-frequency coefficients. This will conserve the features 
from the input images to the maximum threshold. The 
variation indicates the general degree of scattering between 
darkly estimated pixels in an image, often known as the grey 
value. 
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𝐻&!/(𝑎, 𝑏) = Z
𝐻0(𝑥, 𝑦),			if	𝐸1"(𝑎, 𝑏) > 𝐸03(𝑎, 𝑏),

𝐻43 (𝑥, 𝑦),			otherwise.
       (4) 

Equation (4) depicts the fusion process's high-frequency 
coefficients. In this case, the standard high-frequency 
coefficients are developed using the entire valuable feature 
in delivering a quality-fused image. 

3.4 DGN-TBMF MODEL 
A multimodal learning approach should utilize 

complementary data and relationships from multiple 
modalities to enhance learning performance. As a result, it is 
essential to record modality-specific data while harnessing 
the underlying relationships between the different 
modalities. A tri-modal fusion-based Dual Generator 
network is used to accomplish this goal, as shown in Fig. 3. 
The proposed DGN-TBMF network is shown in Fig. 2.  

 
Fig. 2 – Architecture of the proposed DGN-TBMF network. 

3.3.1 GENERATION PHASE  
Generator-1 consists of a dilated convolutional layer for 

extracting the relevant grey matter densities and cortical 
thickness from MRI and CT images. The pre-processed MRI 
and CT images are merged by Generator-1 using common 
fusion strategies like element-wise maximization, element-
wise addition, and element-wise multiplication. Generator-2 
consists of a dilated convolutional layer for extracting the 
relevant voxel intensities from PET images. Generator 
networks are composed of three modules: Self-attention 
(SA) block, Residual feature selection (RFS) block, and tri-
image fusion (TIF) block. 

a) Self-attention block  

The self-attention mechanism has been widely applied to 
solve this problem. The self-attention mechanism attains two 
features 𝑓4!5	and 𝑓78	are attained by 1 × 1 convolution. These 
two feature spaces form the query and key-value pairs. To 
estimate the attention map, both 𝑓4!5	and 𝑓78	 are put into the 
fusion block. The resultant feature maps are up-sampled with 
nearest-neighbor interpolation. According to Fig. 3, the feature 
maps of the SA block are attained after passing through two 
more convolutional layers and up-sampling layers. 

 

 
Fig. 3 – Structural representation of three blocks in Generator-1. 

 
Fig. 4 – Structural representation of three blocks in Generator-2. 

b) Residual feature selection block  

The residual feature selection (RFS) block has been added 
to obtain the best local residual features. The RFS module 
contains four residual blocks. Before being transmitted 
directly to the end of the RFS module, the result of the last 
residual block is concatenated with the residual features of 
the first three blocks. A 1×1 convolution integrates these 
features before the element-wise addition with the identity 
feature. In contrast to stacking additional residual modules, 
the RFS framework allows non-local application of residual 
characteristics. In addition to conveying useful hierarchical 
information that preceding residual blocks contain without 
loss or interference, RFS modules result in a more 
discriminative feature representation. 

c) Tri-image fusion block  

The Tri-image fusion (TIF) block combines the 
characteristics collected by the self-attention block and the 
local detail block as input. Convolutional layers are present 
in three of the merge blocks. Spectral normalization is 
applied only to the top two layers rather than the third. In 
addition, the last layer uses a sigmoid activation function 
instead of a ReLU activation function to produce the final 
fused image. The TIF module is depicted in Fig. 4. In this 
case, an adaptive weight network is used to fuse feature 
depictions from three modalities. In addition to element-wise 
addition, element-wise multiplication, and element-wise 
maximization, the Hadamard product is another popular 
method for fusing multimodal data. As deed in Fig. 4, the 
output 𝑆59*" ∈ ℝ:∗<∗7 for the (𝑛 − 1)8<, the ith layer 
modality is attained, where 𝑐 denotes the number of feature 
channels, 𝑤 and ℎ denotes theeight and width of the feature 
maps, respectively. At that, the three fusion methods are 
employed to the inputs 𝑆59*"	(𝑖 = 1, 2, 3) is used to acquire 
the synthesized output of MRI and CT images. 

𝐹=.9 = d

𝑓> = 𝑆"9*"⊕𝑆#9*"

𝑓= = 𝑆"9*"⊗𝑆#9*"

𝑓4 = max	(𝑆"9*", 𝑆#9*")
	

,                       (5) 

where “⊕”, “⊗” “𝑚𝑎𝑥” and “⊙” represent element-wise 
addition, element-wise multiplication, element-wise 
maximization and hadamard product operations 
respectively. Then, 𝑓7?97>8 = {𝑓>, 𝑓=, 𝑓4, 𝑓<} was combined,  
𝑓7?97>8	is given as an input to the first convolutional layer. 
The resultant of this layer is merged with the DST output 
𝑓9*" of the (𝑛 − 1)	8< TIF block is given as an input to the 
second convolutional layer.  

𝐹&@=/A = 𝑓=.9⊙𝑆B9*".                            (6) 
Finally, the output 𝐹&@=/A of the n-th is obtained from the 

TIF module. Here, when 𝑛	 = 	1, there is no previous output 
𝑓9*", the output of the first convolutional layer feeds into the 
second convolutional layer. Remembering that the fusion 
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strategy enables the TIF module to dynamically weight the 
various feature depictions from the four tri-modalities 
described in the fusion operations is essential. 

3.3.2 DETECTION PHASE  
The deep belief network (DBN) is utilized as the detection 

network for predicting abnormalities in the brain. DBNs are 
built using convolutional restricted Boltzmann machines 
(CRBMs). CRBM is intended to handle the problem of scaling 
techniques to multi-modality images.  

The RBM comprises two layers: 𝐷C	and	𝐷< are denoted as 
visible layers and hidden layers of DBN. Each channel of the 
visible layer is made-up of 𝑁𝐷C ∗ 	𝑁𝐷<	real-valued units. The 
hidden layers contain G groups, each with 𝑁𝐷< ∗ 𝑁𝐷<	hidden 
unit. Moreover, the probabilistic max-pooling procedure 
decreases when the computational load allows full 
probabilistic inferences.  

RBM associates with max-pooling features with 
probabilistic-based inference. The mathematical description 
of the probabilistic max-pooling energy function is derived as 

𝐸(𝐷<, 𝐷C) =
"
#-$

∑ ∑ (𝐷C%,'
D − 𝑐D)# −	

5,F
G
DH"

													∑ ∑ (𝐷<%,'
I	

5,F (∑ "
-
(𝒜I,D ∗ 𝐷CD)5,F + 𝑏𝑖𝑎𝑠I)G

DH"
J
IH" .     (7) 

Here 𝐷C	𝜖ℝKG(	∗	KG(	∗	G signifies the visible units, 
𝐷𝜖ℝKG*	∗	KG*∗	J denotes the hidden units, and σ shows the 
standard deviation factor about the Gaussian visible units. The 
visible units in the lth channel share the bias 𝑐D, whereas the 
hidden units in the g-th group share the 𝑏𝑖𝑎𝑠I. Moreover, the 
flipping of an array horizontally and vertically is defined as 𝒜. 
The inputs are multiplied by the weight matrices, and the bias 
vectors are summed up to produce the fully connected layer 
results. It is derived as,  

𝑂(𝑥) = 𝐴𝐹(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑥 + 𝑏𝑖𝑎𝑠),                   (8) 

where x designates the input of a fully connected layer, and 
O(x) signifies the resultant value of the network. The sigmoid 
layer interprets the values into predictions, and the 
classification layer categorizes the brain abnormalities 
accurately from the fused images. 

4. RESULTS AND DISCUSSION 
This work's experimental setup has been implemented 

using MATLAB 2019b, with the system requirements being 
an i7 processor and 8 GB of RAM. The investigations are 
carried out using MRI, CT, and PET images collected from 
publicly available datasets. Here, two datasets are used for 
evaluation, with each brain medical image in the dataset. In 
this result analysis, each dataset is separated into 75:25 for 
the training and testing.  

 

 
Fig. 5 – Results of the proposed DGN-TBMF model for Dataset-1. 

 
Fig. 6 – Results of the proposed DGN-TBMF model for Dataset-2. 

Figure 5 displays the visualization results of the proposed 
DGN-TBMF model for dataset 1. Figure 6 displays the 
results of the proposed DGN-TBMF model for dataset 2 
using the tri-modality images. The input images 
(column:1,2) are pre-processed using the SCRAB filter to 
eliminate the distortions. These pre-processed images are 
fused using Generator-1; this synthesized output is shown in 
column 3. Then, the PET images (column 4) are processed 
using DST to improve the image quality. These improved 
images are fused with the synthesized images in the 
Generator-2. The final tri-brain modal fused images are 
displayed in column 5. These fused output images 
incorporate different features from tri-modalities for the 
diagnosis of abnormalities. 

4.1 PERFORMANCE ANALYSIS 
This section portrays the effectiveness assessment of the 

proposed DGN-TBMF model, which was determined based 
on specificity, accuracy, recall, precision, and F1 score.  

Table 1 
 Performance evaluation of the proposed DGN-TBMF model. 

Datas
ets 

Images Accu
racy 

Speci
ficity 

Sensit
ivity 

Recal
l 

F1 
score 

 
Data 
set-1 

MRI 98.99 98.02 97.96 98.10 98.92 
MRI+CT 99.09 98.25 98.12 98.79 99.01 

MRI+CT+
PET 

99.25 98.96 98.97 99.02 99.35 

 
 

Data 
set-2 

MRI 97.09 97.05 97.16 97.11 97.02 
MRI+CT 98.14 96.15 97.42 98.09 98.14 

MRI+CT+
PET 

99.04 97.16 96.27 98.12 97.35 

 
Table 1 shows the sensitivity, specificity, precision, F1 

score, and accuracy for datasets 1 and 2. The proposed 
network's accuracy is 99.25 % for dataset 1 and 99.04 % for 
dataset 2.  

Table 2 
Image fusion parameters for two datasets 

Metrics Dataset-1 Dataset-2 
SD 98.78 94.25 
EQ 0.96 0.92 
MI 5.86 4.87 
FF 6.54 5.88 
EN 7.05 6.84 
CF 0.95 0.92 
SF 23.24 27.15 

 
In Table 2, the tri-modal fusion results parameters are 

exposed in terms of various measurements such as standard 
deviation (SD), fusion factor (FF), entropy (EN), correlation 
factor (CF), edge quality (EQ), mutual information (MI), and 
spatial frequency (SF) with respective values. This work 
measures SF as an add-on value since it is a frequency-based 
measurement. Additionally, all measures are selected based 
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on the most significant difference and data protection.  

4.2 COMPARATIVE ANALYSIS 
The efficiency of prior methods was evaluated to reveal 

that the DGN-TBMF net's finding is the most effective. The 
efficiency was calculated using the specific metrics for each 
type of brain disease. The accuracy rate attained through the 
proposed DGN-TBMF net is more efficient than that of state-
of-the-art approaches. A comparative evaluation was made 
between the DGN-TBMF net and the three networks, as 
demonstrated in Table 2. 

Table 3 
Comparison of the proposed model with existing models using different 

performance metrics. 
Table3(a): Standard deviation and edge quality. 

Techniques Dataset-1 Dataset-2 
SD EQ SD EQ 

NSST [21] 90.24 0.84 80.44 0.82 
ST-CNN [25] 80.35 0.54 66.21 0.83 

Fuzzy-GOA [26] 94.08 0.73 56.12 0.75 
DGN-TBMF (ours) 98.78 0.96 94.25 0.92 

Table 3(b):Mutual information and fusion factor. 
Techniques Dataset-1 Dataset-2 

MI FF MI FF 
NSST [21] 2.11 2.97 2.24 2.78 

ST-CNN [25] 3.44 2.23 3.57 2.25 
Fuzzy-GOA [26] 2.55 5.52 2.44 5.24 

DGN-TBMF 
(ours) 

5.86 6.54 4.87 5.88 

 
Table 3 shows how the suggested model is evaluated in 

comparison to several cutting-edge models using two 
databases. Table 4(a) represents the SD and EQ of wavelet 
transforms and deep learning for image fusion. NSST [21], 
ST-CNN [25], and Fuzzy GOA [26] compared with the 
proposed network in dataset-1 while the deviations of SD of 
8.54 %, 18.43 %, and 4.7 % and EQ of 0.12 %, 0.42 %, and 
0.23 % respectively. The existing methods like [21, 25], and 
[26] compared with the proposed network in dataset-2 while 
the variations of SD of 13.81 %, 28.04 %, and 38.13% and 
EQ of 0.1 %, 0.09%, and 0.17%, respectively.  

Table 3(b) shows the MI and FF of the state-of-the-art 
techniques. A robust DGN-TBMF model for low and high-
frequency coefficients was proposed, resulting in better EQ 
and MI for the fused images. NSST [21], ST-CNN [25], and 
Fuzzy GOA [26] compared with the proposed network in 
dataset-1 although the deviations of MI of 3.75 %, 2.42 %, 
& 3.31%, and FF of 3.27 %, 4.31 %, & 0.72 % respectively. 
The existing methods like [21, 25], and [26] compared with 
the proposed model in dataset-2, whereas the variations of 
MI of 2.63 %, 1.30 %, & 2.43 %, and FF of 3.1 %, 3.63 %, 
& 0.64 %, respectively. 

Table 3(c) 
Entropy, correlation coefficient and spatial frequency. 

Techniques Dataset-1 Dataset-2 
EN CF SF EN CF SF 

NSST [21] 5.18 0.46 23.34 5.31 0.34 17.73 
ST-CNN 

[25] 
5.53 0.74 7.82 6.81 0.82 8.82 

Fuzzy-GOA 
[26] 

6.47 0.85 16.42 6.23 0.87 19.08 

DGN-TBMF 
(ours) 

7.05 0.95 23.24 6.84 0.92 27.15 

 
Table 3(c) shows the EN, CF, and SF of the state-of-the-

art techniques. The tri-fused images generated by the 
proposed DGN-TBMF model effectively preserved the 

edges. This is very helpful for Human visual performance. 
NSST [21], ST-CNN [25], and Fuzzy GOA [26] compared 
with the proposed DGN-TBMF model in dataset-1 while the 
aberrations of EN of 1.87 %, 1.52 %, & 0.58 %; CF of 
0.49 %, 0.21 %, & 0.1 %; and SF of 15.42 %, 2.9 % & 6.82 
%. The existing methods like [21, 25], and [26] compared to 
the proposed network in dataset-2 while the deviations of EN 
of 1.53 %, 0.03 %, & 0.61%; CF of 0.58 %, 0.1%, & 0.05 %; 
and SF of 9.42 %, 18.33 %, & 8.07 %, respectively.  

Table 4 
Time complexity comparison of proposed and existing models. 

Techniques Time required (in 
minutes) 

Accuracy 

NSST [21] 186.4 98.54 
ST-CNN [25] 191.5 98.07 

Fuzzy-GOA [25] 192.6 98.21 
DGN-TBMF (ours) 172.5 99.14 

 
A comparison of different algorithms is presented in Table 

4 for 190 MB images for brain tumor analysis. In terms of 
time required to train, the DGN-TBMF model requires the 
least amount of time. It requires roughly 30 minutes to train 
for 100 epochs. Despite its increased weight and training 
time, the proposed DGN-TBMF model has a higher accuracy 
score than the other models. The proposed DGN-TBMF 
model produces the most consistent output with the highest 
weight-to-accuracy ratio. Furthermore, it performed better 
than other approaches based on prediction accuracy, whereas 
the DGN-TBMF model is highly responsive to different 
brain input images. 

5. CONCLUSION AND FUTURE WORK 
This work presents a novel DGN-TBMF model for fusing 

medical tri-modality images to identify brain diseases in 
their early stages. The investigations are being conducted on 
a publicly accessible pre-enrolled dataset, which includes 
CT, MRI, and PET images. The pre-processed MRI and CT 
images are merged by the first generator using three popular 
fusion strategies, and the second generator is used to fuse the 
generated synthesized image and pre-processed PET images 
using four fusion strategies. The proposed DGN-TBMF 
model achieves high-performance levels based on the SD, 
EQ, MI, FF, EN, CF, and SF of 96.51, 0.79, 5.36, 6.21, 6.94, 
0.93, and 25.19, respectively. The proposed DGN-TBMF 
uses a deep-learning model for image fusion and disease 
detection. Several aspects of this method make it faster and 
more effective than other methods. Through the proposed 
technique, multi-level decomposition fusion has significant 
implications for medical diagnosis. In future work, the 
proposed model can be applied in real-time to identify 
various diseases. 
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