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The Internet of Things (IoT) represents a transformative technological concept that seamlessly becomes a part of the Internet 
across all industries. Artificial intelligence (AI) provides IoT with new capabilities used to analyze data in real-time and make 
informed decisions. There is a wide array of IoT devices with different computational capabilities and AI accelerators that need 
to be compared. The current paper proposes a comparison between two single-board computers using an existing AI benchmark.

1. INTRODUCTION 

The Internet of Things (IoT) represents a transformative 
technological concept in which everyday objects that all people 
use will be equipped with a blend of hardware and software 
components that will enable devices to communicate with each 
other and seamlessly become a part of the Internet. Through 
facilitating accessibility and engagement with a diverse array of 
devices such as home appliances, surveillance cameras, vehicles, 
etc., IoT is set to catalyze the development of a wide range of 
applications [1]. With the continuous integration of IoT 
technologies, they are leading the way into a new era of 
innovation, automation, and efficiency across a wide range of 
domains, having the potential to improve our lives and 
revolutionize industries. 

IoT systems have the flexibility to be deployed in a wide 
range of industries. Each solution can be customized to suit 
specific needs and requirements for each applicability 
domain. In the realm of smart homes [2], IoT technologies 
provide users with the ability to remote control and monitor 
their appliances, security systems, and environmental 
settings. In the industrial sector [3] IoT is used to predict 
maintenance needs and improve machines and processes, 
leading to reduced downtime and lower operational 
expenses. Smart cities [4] leverage IoT to improve urban 
infrastructure, traffic management, waste disposal, and 
energy consumption. In the field of agriculture [5] IoT allows 
farmers to keep an eye on the crop conditions and adopt data-
driven decisions to enhance the quality of the crops. In the 
automotive sector [6], the focus on connected vehicles 
enabled them to communicate with other vehicles and with 
the infrastructure, resulting in enhanced safety, traffic 
management, and improved user experience. With their wide 
range and flexible applications, IoT devices represent the 
main technology that is reshaping our world by enhancing 
the efficiency of everyday tasks in each industry, fostering 
innovation, and enhancing the overall quality of life. All 
those systems evolved into a significant data source with 
billions of interconnected devices that produce huge amounts 
of data that need to be analyzed [7], which can be addressed 
by leveraging artificial intelligence techniques. 

The IoT data streams are continuously generating substantial 
heterogeneous quantities of data that are not practical to analyze 
in real-time [8]. Artificial intelligence (AI) techniques provide 
IoT devices with the capability to analyze data in real-time, make 
informed decisions, and establish automation processes driven 
by these algorithms. When developing AI-driven solutions for 
IoT, it is essential to consider the platform on which the 
application is deployed.  

IoT includes a wide array of devices with different 
computational capabilities. If we are considering the AI 
domain, there are two broad categories: traditional devices 
with CPUs and IoT devices equipped with AI accelerators. 
Traditional IoT devices are typically powered by a CPU 
which can provide the user with a variety of tasks that can be 
handled by the device. These devices are suited for basic data 
processing, sensor monitoring, and communicating with 
other systems. In contrast, IoT devices equipped with AI 
accelerators, such as GPUs (graphics processing units) or AI 
chips like TPU (tensor processing units) or NPU (neural 
processing units) are designed to perform AI tasks making it 
possible for the IoT devices to analyze data in real-time and 
provide advanced features like object recognition, natural 
language processing or predictive analytics. 

The current paper will propose a benchmark comparison 
between a traditional IoT device and an AI-powered IoT device 
to evaluate the performances of each system and determine 
which platform can be used to build a robust IoT security 
gateway that will also have advanced AI capabilities for threat 
detection and mitigation. This paper will contain a list of 
currently available benchmark suites, an overview of the chosen 
benchmark and the tests that will be performed on each platform, 
a discussion on the results, and how the chosen platform will be 
used to further develop the secure IoT gateway.  

2. RELATED WORK 

AI benchmarks are tools that are used in the landscape of AI 
research and development. They are used as objective and 
standardized methods for evaluating the performance of AI 
systems, models, and hardware across a diverse array of tasks. 
This chapter will focus on various research papers that offer 
unique insights into AI benchmarking, offer clarity on the scope 
and implementation of the benchmarking, and provide 
perspectives and contributions. Each paper presents a distinct 
viewpoint on the challenges and opportunities within AI 
benchmarking, and they will be used to deepen the 
understanding of how they can be used to properly assess 
different IoT hardware platforms. 

AI benchmark [9] is a versatile benchmarking suite that 
proves the evaluation of AI systems and hardware performance. 
It covers a variety of diverse AI workloads, ranging from image 
recognition and object detection to speech recognition, ensuring 
a thorough assessment of AI capabilities. Utilizing well-known 
neural network models like MobileNet, Inception, ResNet, and 
BERT, it measures the efficiency with which the systems handle 
the model architectures in AI applications. AI Benchmark is 
adaptable across various platforms, making it suitable for 
assessing AI performance for devices like smartphones, edge 



98 Internet of things benchmark: an artificial intelligence assessment 2 

 

devices, and datacenter servers. As an open-source tool, AI 
Benchmark helps users make informed decisions regarding their 
hardware and software configurations for AI applications. 
Compared to other benchmarks, AI Benchmark excels in the 
variety of models tested compared to the upcoming benchmarks 
that are more algorithm specific. 

MLPerf [10] represents an industry-standard benchmark suite 
dedicated to assessing the performance of machine learning 
models and hardware. The benchmark offers a comprehensive 
range of tasks encompassing image and speech recognition, as 
well as natural language processing. The importance of MLPerf 
is amplified by its extensive embrace within the AI community. 
What sets MLPerf apart is its commitment to delivering clear and 
uniform metrics, facilitating substantial cross-platform contrasts. 
Compared to AI Benchmark, the metrics produced after each test 
are more comprehensive and can be used to compare additional 
characteristics for different platforms. 

AI matrix [11] is an evaluation and testing framework 
developed by Alibaba Group to assess the performance and 
capabilities of AI systems. This benchmark is designed to 
provide assessments of AI models across various domains, 
including natural language processing, computer vision, and 
more. By offering a standardized set of tests and metrics, this 
benchmark allows users to fine-tune their AI models by the three 
types of benchmarks proposed: layer-based, which consists of 
commonly used layers in deep learning neural networks like 
convolutional layer, activation layer, etc., macro benchmark, 
which consists of full models used in deep learning neural 
networks, and micro-benchmark, which consists of matrix 
operations. Compared to the other benchmarks, the current 
benchmark has an emphasis on deep learning algorithms, and it 
may not offer a complete comparison between platforms.  

Fathom [12] offers a collection of models that incorporate 
multiple layer types, such as convolutional, fully connected, and 
recurrent neural network layers. However, its primary emphasis 
is on maximizing throughput rather than achieving the highest 
level of accuracy. This benchmark behaves like an AI 
benchmark that has different tests that don’t focus on accuracy 
but on a variety of models tested. 

EEMBC MLMark [13] is an AI benchmark designed to assess 
the machine learning inference performance of edge devices. It 
provides a comprehensive evaluation of the effectiveness of 
which a system can execute machine learning workloads, 
covering a wide range of neural network models and operations 
that include image classification and object-detection tasks. The 
benchmark measures aspects such as inference speed, power 
consumption, and memory usage. Like the AI matrix, this 
benchmark focuses on specific types of AI models and not on a 
wider array of models. 

DAWNBench [14] was the first benchmark suite designed to 
evaluate and compare end-to-end performance of deep learning 
training across various machine learning models and hardware 
configurations. It offers a diverse set of tasks, including image 
classification and language modeling that allows users to assess 
the speed and efficiency of AI models on different platforms. 
This benchmark has an emphasis on deep learning algorithms 
and compared to AI Benchmark or Fathom which have a wider 
range of tests available, it may not offer the best results for 
platform comparison. 

DeepBench [15] is a microbenchmark specialized in assessing 
the low-level performance of both hardware and software 
components in the context of deep learning workloads. It focuses 
on quantifying the computational efficiency of fundamental 

operations crucial for deep learning, such as convolutions and 
matrix multiplications that are made at the kernel level. This 
benchmark focuses on low-level operation analysis and its 
granularity may not be suitable for testing overall platform AI 
capabilities. 

AI benchmarks play an important role in the dynamic world 
of artificial intelligence. They provide a standardized and 
objective way to assess the performance of AI systems, models, 
and hardware across a multitude of tasks, ensuring that 
technological advancements are rigorously evaluated and 
compared. Based on the current research, in the next chapters 
will assess how these benchmarks can facilitate the selection of 
a hardware IoT platform for the development of a highly secure 
IoT gateway. 

3. TRADITIONAL VS. AI-READY IOT PLATFORMS 

With the integration of AI, IoT platforms have experienced a 
significant evolution in their applicability scope. This 
transformation enabled the IoT platforms to perform complex AI 
tasks, which are capable of handling and processing vast 
amounts of data while making intelligent decisions in real-time. 
To properly compare the currently available IoT platforms, there 
needs to be a comparison between hardware components, 
processing capabilities, and AI-specific technologies like neural 
processing units (NPU), tensor processing units (TPU), and 
graphics processing units (GPUs). 

Traditional IoT platforms are conventionally using 
microcontrollers, sensors, and communication modules. These 
devices are designed to collect and transmit data without any 
significant processing power for AI activities. Traditionally, data 
processing is being done on external cloud resources or edge 
computing devices, which can lead to latency and increased data 
transfer costs. Even though basic AI analytics can be performed 
on these types of devices, the platforms are not equipped with 
capabilities for complex AI models for real-time analysis. On the 
other hand, AI-ready platforms use more powerful acceleration 
processors such as GPUs, TPUs, and NPUs that allow the 
platforms to efficiently handle AI workloads and accelerate AI 
model development and their inferencing processes. These 
platforms can handle data processing both on the edge and in the 
cloud offering flexibility in terms of latency and cost since they 
can filter and aggregate data locally and transmit only relevant 
insights to the cloud. The computation of the information is 
highlighted by the complex AI capabilities that allow the 
execution of AI models at the edge making real-time decisions 
possible. Acceleration processors provide different capabilities 
based on their processor type. 

NPUs [16] are specialized processors designed for a wide 
range of AI application scenarios. Compared to traditional CPU 
and GPU computations, NPUs are more power efficient and 
deliver enhanced performance in AI inference, gaining an edge 
in the realm of low-powered IoT devices. On the other hand, 
GPUs [17] are suitable for training deep learning models, but 
they can use more power than NPUs and TPUs, which makes 
them less efficient for AI IoT scenarios. Lastly, TPUs [18] are a 
technology developed by Google [19] offering similar 
capabilities to the NPUs, but it is more focused on deep learning 
tasks and may have limited flexibility for other AI applications.  

Out of all the presented options, the best IoT candidate for AI 
is the NPU accelerator since it offers the most balanced 
characteristics for a wide range of IoT applications. It is built 
with a focus on power efficiency, making it suitable for battery-
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powered IoT devices as they consume less energy and deliver 
fast and efficient AI inference, ensuring real-time decision-
making and reduced latency for IoT solutions. The power 
efficiency nature of the NPUs can lead to cost savings and offer 
robust performances for the IoT environments. 

AI-ready IoT platforms equipped with NPU accelerators are 
transforming IoT solutions by enabling real-time AI processing 
and enabling new capabilities for everyday use cases. NPUs are 
a compelling option for IoT applications due to efficient AI 
performance with low energy usage, giving them an edge over 
traditional CPU and GPU platforms. However, there is a need to 
conduct a performance comparison between traditional IoT 
devices and NPU accelerated devices to validate if the latest is 
more efficient for AI IoT applications. 

This validation is necessary to determine the platform’s 
suitability for building a performant IoT security gateway that 
will leverage AI algorithms for intrusion detection and intelligent 
resolution to solve security issues. 

4. METHODOLOGY 

According to the literature reviewed in this paper, 
considering that various benchmarks can be used to compare 
different hardware platforms, it is essential to select a 
specific benchmark that will be used for a comparison that 
aims to identify the most suitable platform for AI 
applications, particularly to be used for an IoT security 
gateway with AI capabilities.  

While all the benchmarks examined in this paper are 
powerful options for evaluating and comparing AI 
capabilities across various hardware platforms, the choice 
was made for the AI benchmark. This benchmark was 
chosen because it covers a more diverse array of tasks that 
provides a broad spectrum of AI workloads making it 
suitable to assess the overall performance of the selected 
platforms. As the scope of the current paper is set to find a 
suitable platform that can be used to develop an IoT 
cybersecurity gateway with AI capabilities, the scope is to 
find the best platform that performs better in different 
scenarios, with different models and different datasets. AI 
Benchmark has an edge over the other benchmarks as it 
offers several test cases, with different models and datasets 
that can be assessed. The decision was also made to focus 
on SBC platforms which will be presented later in this 
chapter. However, the other benchmarks still offer robust 
solutions to compare platforms, but they weren’t chosen for 
various reasons. MLPerf is known for its complexity which 
may be excessive for the relative constraint environments 
as the used datasets are not suitable for SBCs as they have 
several GB worth of data, AI matrix, and DAWNBench 
have an emphasis on deep learning tasks and are not testing 
different algorithms, Fantom is designed for Intel 
platforms, while the SBC use ARM CPUs, EEMBC 
MLMark is tailored for microcontroller platforms and 
DeepBench is designed for low-level operation analysis.  

AI benchmark consists of 19 sections that contain a total 
of 42 tests as presented in Table 1. 

The benchmark will produce different timing metrics that 
will be used to compare the platforms: benchmark execution 
time, inference time, training time, AI score, inference score, 
and training score. Those scores represent a mean 
comparison between the reference time that each algorithm 
should take to execute the process and the mean times that 
each algorithm had. The total AI score is the summation of 

the inference and training scores. The platforms that will be 
assessed are presented in Table 2. 

The benchmark results that will be assessed in the 
following chapter will give enough information to make a 
decision on which platform is best suited to host a powerful 
security IoT gateway with AI capabilities. 

Table 1 

AI benchmark test 
Model Type Paper 

MobileNet-V2 Classification [20] 
Inception-V3 Classification [21] 
Inception-V4 Classification [22] 
Inception-ResNet-V2 Classification [23] 
ResNet-V2-50 Classification [23] 
ResNet-V2-152 Classification [23] 
VGG-16 Classification [24] 
SRCNN 9-5-5 Image-to-Image Mapping [25] 
VGG-19 Image-to-Image Mapping [26] 
ResNet-SRGAN Image-to-Image Mapping [27] 
ResNet-DPED Image-to-Image Mapping [28] 
U-Net Image-to-Image Mapping [29] 
Nvidia-SPADE Image-to-Image Mapping [30] 
ICNet Image Segmentation [31] 
PSPNet Image Segmentation [32] 
DeepLab Image Segmentation [33] 
Pixel-RNN Image Inpainting [34] 
LSTM Sentence Sentiment Analysis [35] 
GNMT Text Translation [36] 

Table 2 

Tested Platforms Specifications 
Characteristic Raspberry Pi 5 Orange Pi 5 
Socket BCM2712 RK3588S 

CPU ARM-Cortex A76 ARM-Cortex A76 +  
ARM-Cortex A55 

RAM 4GB LPDDR4X 4GB LPDDR4/4x 
Storage SD Card SD Card 
External Storage USB SSD SATA3 USB SSD SATA3 
AI Accelerator N/A NPU Accelerator – 6TOPS 

5. RESULTS 

The AI benchmark was executed on both platforms to 
compare the performance of each hardware configuration. 
The scope of the current study is to find which platform can 
be used as a security gateway with performant AI capabilities 
for IoT devices. The performance is measured by the 
following metrics: benchmark execution time, inference 
time, training time, AI score, inference score, and training 
score. 

1. Benchmark execution time. Table 3 contains a 
comparison between the total execution time for a 
benchmark run for each platform. 

Table 3 

Benchmark execution time [s] 
Platform Benchmark execution time [s] 

Raspberry Pi 5 4377 
Orange Pi 5 3570 

 
The execution time results are as expected. The Orange 

Pi 5 has a more powerful hardware configuration than the 
Raspberry Pi 5. Considering the total time execution of the 
benchmark, the Orange Pi 5 demonstrates almost 20 % 
greater time efficiency compared to the Raspberry Pi 5. The 
impact of this metric will be reflected in the inference and 
training times reflected in the upcoming benchmark results. 

2. Inference mean time. Figure 2 and Table 4 compare 
all the benchmark inference tests. Out of 19 categories, 
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the Orange Pi 5 had an edge over the Raspberry Pi 5 in 16 
categories. The results are expected since the Orange Pi 5 
has a more performant CPU and an NPU that work 
together in the inference process. However, the other three 
categories need to be better optimized to use the full 
potential of the Orange Pi 5 board, and the Raspberry Pi 5 
has better results on those tests. The CPU of the Orange 
Pi 5 will also provide advantages in the model training 
over the Raspberry Pi 5. 

Table 4 

Inference mean time [s] 
Benchmark Test Raspberry Pi 5 Orange Pi 5 

MobileNet-V2 2.601 1.401 
Inception-V3 5.734 3.85 
Inception-V4 5.762 3.972 

Inception-ResNet-V2 6.728 5.114 
ResNet-V2-50 3.745 2.982 

ResNet-V2-152 5.589 4.183 
VGG-16 9.723 8.067 

SRCNN 9-5-5 7.866 6.066 
VGG-19 Super-Res 13.517 10.124 

ResNet-SRGAN 14.675 11.288 
ResNet-DPED 15.697 11.164 

U-Net 34.212 26.07 
Nvidia-SPADE 13.089 10.128 

ICNet 5.464 9.416 
PSPNet 65.432 49.862 

DeepLab 13.967 14.57 
Pixel-RNN 8.656 5.916 

LSTM-Sentiment 22.475 26.015 
GNMT-Translation 7.2 6.949 

 

 
Fig. 2 – Inference mean time [s]. 

3. Training mean time. Figure 3 and Table 5 compare 
benchmark training tests. The benchmark skipped the 
GMMT algorithm as it used a pre-trained model. Of the 19 
tests, the Raspberry Pi 5 had an edge only on the LSTM 
algorithm, which trained the model faster than the Orange Pi 
5. In all the other scenarios, Orange Pi 5 had better training 
times versus the Raspberry Pi 5 and the most notable 
difference is on the SRCNN 9-5-5 model where Orange Pi 5 
had 72 % more-time performance than the Raspberry Pi 5. 

4. AI score. Figure 4. contains a comparison between the 
AI scores that the AI Benchmark produced. The total score 
is the summarization of the mean inference time score and 
mean training time score. The scores represent a comparison 
between each algorithm reference time and the actual mean 
time for inference, respectively for the training times. The 
times presented in the last two categories produced the scores 
and based on them, the winner in this category is the Orange 
Pi 5 which has an AI score of 285 points, which is 32 % more 
performant than the result of the Raspberry Pi 5. 

Table 5 

Training mean time [s] 
Benchmark Test Raspberry Pi 5 Orange Pi 5 

MobileNet-V2 17.633 8.594 
Inception-V3 40.623 24.668 
Inception-V4 47.731 24.21 

Inception-ResNet-V2 44.507 21.783 
ResNet-V2-50 38.824 13.746 

ResNet-V2-152 43.876 21.132 
VGG-16 34.617 15.798 

SRCNN 9-5-5 465.584 129.051 
VGG-19 Super-Res 61.895 57.048 

ResNet-SRGAN 40.668 33.05 
ResNet-DPED 90.241 39.165 

U-Net 74.303 35.112 
Nvidia-SPADE 44.23 15.061 

ICNet 33.386 18.074 
PSPNet 43.588 29.592 

DeepLab 23.692 14.229 
Pixel-RNN 5.729 4.262 

LSTM-Sentiment 31.713 57.607 
GNMT-Translation 0 0 

 

 
Fig. 3 – Training mean time [s]. 

5. Platform benchmark conclusions. Both platforms offer 
robust capabilities for standard tasks but are also good 
options for AI tasks. The AI Benchmark offers a good suite 
of tests that were used to compare the Raspberry Pi 5 and 
Orange Pi 5 platforms to determine which one is the better 
to be used for a secure IoT gateway with AI capabilities. 
Even though the Raspberry Pi 5 has robust results in the AI 
Benchmark and can be used for a secure IoT gateway with 
AI capabilities, also considering the price point and energy 
efficiency of the SBC, the Orange Pi 5 represents a better 
option for a small cost increase and similar energy 
performance has better results in almost all aspects tested 
using the AI Benchmark tool. 

 

 
Fig. 4 – AI score. 
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6. FUTURE DEVELOPMENT 

The conducted AI Benchmark comparison was made to 
identify which of the two platforms can be used to create a 
powerful identification and prevention machine learning 
system for IoT devices that communicate using the TCP/IP 
protocol. The Orange Pi 5 will be used to create a system that 
will capture traffic data, create a new dataset to train ML 
models for device identification and threat detection, and do 
real-time analysis and response to protect the connected IoT 
devices in the system. The benchmark execution was limited 
to using CPU only as it wasn’t designed to leverage the 
onboard NPU of the Orange Pi 5. Even though only the CPU 
was used for the comparison, the benchmark offers important 
results as the machine learning models need to be constantly 
retrained to detect newly added devices in the system and 
new types of vulnerabilities. In the future, enabling the NPU 
on the Orange Pi 5 will ensure more efficient inferencing for 
the created machine learning models. 

In the continuously expanding field of IoT, where security 
is one of the most important factors in IoT ecosystems, 
exploring the potential of the NPU becomes mandatory. 
While the CPUs show good performance, AI accelerators 
offer greater computational efficiency and real-time 
detection and response for external threats, offering robust 
protection mechanisms. The future strategy is to minimize 
the vulnerabilities and create a safe environment for IoT 
devices which must be used securely, contributing to the 
development of IoT. 

7. CONCLUSIONS 

The current study has undertaken a thorough comparison of 
two platforms, the Raspberry Pi 5 and Orange Pi 5, to 
determine which platform is best suited to be used as an 
intelligent IoT security gateway with AI capabilities. The 
evaluation was facilitated by the comprehensive suite of tests 
provided by AI Benchmark, which allowed a thorough 
investigation of the AI capabilities of each platform. The 
results showed that the Orange Pi 5 can be successfully used 
to create a robust security IoT gateway with AI capabilities for 
IoT devices that communicate using the TCP/IP protocol. As 
the demand for efficient and secure IoT environments 
continues to grow, the insights collected from this 
comparative analysis provide a valuable foundation for the 
decision made in selecting the platform for future IoT 
implementation. 

Received on 26 November 2023 
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