
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 
Vol. 70, 2, pp. 211–216, Bucarest, 2025 

1 Faculty of Information Technologies, Slobomir P University, Str. Pavlovića put 76, 76300 Slobomir, Republic of Srpska, Bosnia and 
Herzegovina. E-mail: djurdje@beotel.rs. 

  DOI: 10.59277/RRST-EE.2025.2.11 

TIME-FINITE IMPULSE RESPONSE DIGITAL FILTER BASED ON 
THE TIME DIFFERENCES 

DJURDJE PERIŠIĆ1 

Key words: Frequency locked loop; Digital filter; Phase locked loop; Digital circuit; Discrete linear system.  

This work describes one model of the time-finite impulse response (FIR) digital filter whose output is based on the time differences 
between the input and output periods. It is intended for the filtering of the pulse signal periods. The filter is a linear, discrete 
system that functions as a frequency locked loop (FLL). The output correction is performed once per period. The specific 
properties of the FLL are described, thanks to which it is suitable to be adapted to function as a time-FIR either low-pass or high-
pass digital filter. The procedure for adjusting the fourth-order FLL into the Time-FIR digital filter is presented. Mathematical 
analyses were performed using the Z-transform. The system’s operation was simulated. For analysis in the frequency domain, the 
theory and the corresponding MATLAB software packages, intended for the development of the classical FIR digital filters, were 
used. The properties of the fourth-order FLL, as well as the filtering abilities of the developed Time-FIR digital filter, are 
demonstrated in the time and frequency domains.    

1. INTRODUCTION 
Time-infinite impulse response (IIR) digital filters are 

described in refs. [1,2], while Finite Impulse Response 
(Time-FIR) digital filters are described in [3,4]. The 
expression “Time-digital filter” was used for the first time in 
[1]. Time-digital filters may be type FIR or type IIR, 
depending on if only the input periods or both the input and 
output periods are processed. This approach is adopted, 
modeled on classic digital filters, which process the current 
values of a signal, rather than the periods of an impulse 
signal. The Time-digital filters, either type FIR or IIR are 
intended for the filtering of impulse signal periods. Unlike 
the classic digital filters, which possess only one output, 
Time-digital filters possess three outputs [4]. These are the 
output period TOk, time difference tk between the output and 
input period and time interval Tk =TIk-tk. All of them depend 
on the input signal period TIk, which means that they contain 
the information of TIk. For the described FLL in [4], the 
frequency responses of TOk, tk, and Tk are different. They 
indicate that all the outputs TOk, tk and Tk possess some 
filtering characteristics. However, only the output TOk in [4] 
functions precisely as the classic digital filter. 

This article is a continuation of the development of Time-
FIR digital filters based on the processing of periods [3,4]. 
In [1,4], various types of low-pass time-digital filters are 
described, which are characterized by the fact that the sum 
of all filter parameters is equal to unity. This allowed digital 
filter functions to be built into the output period TOk. 
However, the sum of the coefficients is not equal to one in 
all types of digital filters. In these cases, a filtering function 
cannot be incorporated into the output period TOk. Based on 
this knowledge, the questions are if we can overcome this 
problem finding an algorithm of FLL whose output tk, 
instead of the output TOk, performs the filtering of the input 
signal periods. The associated questions are how to 
implement it using the theory of the classic digital filters and 
what are the advantages in comparison to the Time-digital 
filters described in [1-4], in which only the output TOk 
functions precisely as the classical digital filter. This article 
answered each of these questions, using a new model of FLL 
of the fourth order to demonstrate the principle. The same 
principle can be applied to FLL of any order.  

Numerous applications of FLLs are described in [5–10]. 
These references are also important for this article, because 
they describe, at the same time, the way of functioning and 

realization of Time-digital filters, the way of their computer 
simulation in the time domain, as well as the way of their 
design and analysis using the Z-transform and the theory of 
linear discrete systems. The articles and books in [11–26] 
serve as a theoretical basis for electronics implementations 
and development necessities. 

2. DESCRIPTION OF THE FOURTH-ORDER FLL4 

Figure 1 represents a general case of an input signal Sin 
and an output signal Sop of the fourth-order FLL4 and shows 
the physical relations between the input and output variables, 
when FLL4 is in the stable state. The periods TIk and TOk, as 
well as the time difference tk and time interval Tk occur at 
discrete times tk, tk+1, tk+2, tk+3 and tk+4. Unlike [1–10], where 
discrete time tk is defined by the falling edge of TOk, in this 
article the discrete time tk is defined by the falling edge of 
Sin in Fig. 1. Note that the variable "k", represents the 
discrete time tk when an input period is measured and taken 
in calculation. To adapt the output tk of FLL4 to function as 
the Time-FIR digital filter, let us define the basic difference 
equation tk, shown in eq. (1), in which b1, b2, b3 and b4 are 
the system parameters. Note that, unlike [1–4] where the 
filter algorithm is embedded in the output period TOk; in this 
case, the filter algorithm is included within the time 
difference tk. According to eq. (1), there are four 
multiplications with four system parameters in calculation of 
any time difference tk. 

 

              
Fig. 1 – The time relations between the input and output variables of the 

fourth-order FLL4.  

 τ!"#=𝑏$𝑇𝐼!"% + 𝑏&𝑇𝐼!"& + 𝑏%𝑇𝐼!"$ + 𝑏#𝑇𝐼! , (1) 

One of the first checks is whether the algorithm, given by 
eq. (1) is feasible. For example, tk+4 can be calculated at 
discrete time tk+4, since the last input period TIk+3 in eq. (1) has 
expired at time tk+4. At the same discrete time tk+4, it is 
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necessary to start the realization of tk+4, after it is calculated 
according to eq. (1). In mathematical sense, it means that tk+4 
is added to Tk+3 to form TOk+3 in Fig. 1. The described way of 
functioning will significantly facilitate the realization of FLL4, 
because we should not take care about the sign of tk. The 
realization of FLL4 is feasible only if tk remains always 
positive and does not change its sign. This is ensured if TOk 
always lags behind TIk, as shown in Fig. 1. However, only 
through system analysis can it be determined how the system 
behaves, whether it will remain stable, and whether it can be 
adapted to function as a digital filter. For the complete 
analysis, it is necessary to define an expression for the output 
period TOk. According to the previous description, TOk should 
be calculated according to eq. (2). Note that TOk and tk+1 

elapse at the same time in Fig. 1. However, tk+1 is first 
calculated according to eq. (1). On the falling edge of tk+1 an 
impulse of TOk will be generated to finish the period TOk. 
According to eq. (2), the output period TOk consists of two 
parts. The first part, during the duration of Tk, is formed 
passively without any system action, while the second part tk+1 
is calculated according to eq. (1) and added to the time interval 
Tk at the discrete time tk+1. Note that tk+1 is added to Tk after TIk 
is finished. In this way, we ensured that tk+1 is always positive, 
i.e., that TOk always lags behind TIk. However, for further 
analysis, we need to find out how TOk depends on TIk. We can 
see in Fig. 1 that Tk=TIk-tk. Entering this expression into eq. 
(2), we will get eq. (3). Note that the eqs. (2) and (3) are valid 
for FLL of any order. 

 TO!=𝑇! + τ!"$, (2) 

 TO!=𝑇𝐼! + 𝜏!"$ − τ! . (3) 

In the following sections, we will analyze whether the 
described FLL4 can possess the expected properties. We will 
find the conditions for the system stability, define the transfer 
functions of the FLL4 and the corresponding “b” vectors 
which are necessary to adapt FLL4 to function as a time-
digital filter. We will also perform the different analyses in 
the time and frequency domains of FLL4. 

3. STEP ANALYSIS OF FLL4 
To perform the step analysis of FLL4, let us first find the 

Z-transform of eqs. (1) and (3). The Z-transform of eq. (1) is 
shown in eq. (4), where t0 is the initial condition of tk. Based 
on eq. (1), t1=b1TI0, t2=b1TI1+b2TI0 and t3=b1TI2 +b2TI1 
+b3TI0. If we enter the previous expressions into eq. (4), we 
can find t(z), eq. (5). The Z-transform of eq. (3) is shown in 
eq. (6). Entering t(z) from eq. (5) into eq. (6), we can 
calculate TO(z), eq. (7). Based on eqs. (5) and (7), the 
transfer functions Ht4(z)=t(z)/TI(z) and HTO4(z) = 
TO(z)/TI(z) are shown in eqs. (8) and (9). 

 𝑧#τ(z)-𝑧#τ'-𝑧%τ$-𝑧&τ&-zτ%=𝑧%𝑏$𝑇𝐼(𝑧) 

 -𝑧%𝑏$𝑇𝐼'-𝑧&𝑏$𝑇𝐼$-z𝑏$𝑇𝐼&+𝑧&𝑏&𝑇𝐼(𝑧) (4) 

 -𝑧&𝑏&𝑇𝐼'-z𝑏&𝑇𝐼$+z𝑏%𝑇𝐼(𝑧)-z𝑏%𝑇𝐼'+𝑏#𝑇𝐼(𝑧),  

 τ(z)= 𝑇𝐼(𝑧) 𝑧
3𝑏1+𝑧2𝑏2+𝑧𝑏3+𝑏4

𝑧4 + τ', (5) 

 𝑇𝑂(𝑧) = 𝑇𝐼(𝑧) + 𝑧τ(z) − 𝑧τ' − τ(z), (6) 

             𝑇𝑂(𝑧) = 𝑇𝐼(𝑧)[𝑧#(𝑏$+1) + 𝑧%(𝑏&-𝑏$)  

                   +𝑧&(𝑏%-𝑏&) + 𝑧(𝑏#-𝑏%)-𝑏#]/𝑧# − τ',               (7) 

 𝐻τ!(z) =
𝑧3𝑏1+𝑧2𝑏2+𝑧𝑏3+𝑏4

𝑧4 , (8)   

 𝐻𝑇𝑂!(𝑧) = *𝑧4(𝑏1+1++ 𝑧
3(𝑏2-𝑏1)  

        +𝑧&(𝑏%-𝑏&) + 𝑧(𝑏#-𝑏%)-	𝑏#]/𝑧#,                        (9) 

Let us suppose that the step input is TI(k)=TI=const. 
Substituting the Z-transform of TI(k), i.e., TI(z)=TI·z/(z-1) 
into eq. (5) and using the final value theorem, it is possible 
to find the final value of the time difference as t4¥=lim [(z-
1)·t4(z)], when z→1. The result is shown in eq. (10).  It 
comes from eq. (10), that t4¥=TI if eq. (11) is satisfied. In the 
same way, substituting the Z-transform of TI(k), i.e., 
TI(z)=TI·z/(z-1) into eq. (7) and using the final value 
theorem, it is possible to find the final value of the output 
period as TO4¥=lim [(z-1)·TO4(z)], when z→1. The result is 
shown in eq. (12). This is for the first time, relating Time 
FLLs and PLLs presented in [1–10], that the output period in 
the stable state of a FLL equals the input period TI without 
any condition. This fact enables vast possibilities in the usage 
of this model of FLL in time digital filtering applications, as 
well as in other FLL applications. It can be seen in [1–10] 
that we are allowed to use the system parameters only in the 
regain, which provides a stable system choice of the system 
parameters. The usage of this model is not limited, and it can 
be devoted to improving the performance of other systems, 

 τ#, = 𝑇𝐼(𝑏$ + 𝑏& + 𝑏% + 𝑏#), (10) 

 𝑏$ + 𝑏& + 𝑏% + 𝑏# = 1, (11) 

 𝑇𝑂#, = 𝑇𝐼. (12) 

Note that eq. (11) is not the condition for system stability. 
It is only the condition that enables t4¥ to equal TI in the 
stable state of FLL4. We will see later that t4¥ can reach any 
value, but the system will still be functional, because TO4 
will always equal TI. To proof that, let us now simulate the 
functioning of FLL4 in the time domain to show the practical 
meaning and benefits of the mentioned property. At the same 
time, the simulation will verify the accuracy of the 
mathematical results. All discrete values in simulations were 
merged to form continuous curves. All variables in the 
following diagram were presented in time units. The time 
unit can be, µsec, msec or any other, but assuming the same 
time units for all time variables TI, TO and t, it was more 
suitable to use just “time unit” or abbreviated “t.u.” in the 
text. It was more convenient to omit the indication „t.u.“, in 
the diagrams. 

The simulations of TO(k) and t(k) for the step input TIk=6 
t.u, are shown in Fig. 2. All values for three cases of different 
parameters b1, b2, b3 and b4, are shown in Fig. 2. The initial 
conditions TI0, TO0 and t0 are equal for all of three cases. 
The system parameters b1=b2=b3=b4=0.25 t.u. in Fig. 2a, 
satisfy eq. (11), i.e., b1+b2+b3+b4=1. In this case, as it was 
expected, the output period TO∞ reached the input periods 
TI=6 t.u. when FLL4 is in the stable state. At the same time, 
according to eq. (10), the output t∞=TI, proving the 
correctness of eqs. (10), (11) and (12). The system 
parameters b1=b2=b3=b4=0.2 t.u. in Fig. 2b, do not satisfy eq. 
(11), since b1+b2+b3+b4=0.8 t.u. Despite that, the output 
period TO reached the input periods TI=6 t.u. when FLL4 is 
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in the stable state. At the same time, according to eq. (11), 
t∞=TI(b1+b2+b3+b4)=6·(0.2+0.2+0.2+0.2)=4.8 t.u. This 
result agrees with the simulated t∞, shown in Fig. 2b. The 
system parameters b1=b2=b3=b4=0.3 t.u. in Fig. 2c, also do 
not satisfy eq. (11), since b1+b2+b3+ b4=1.2 t.u. In spite of 
that, the output period TO reached the input periods TI=6 t.u. 
when FLL4 comes to the stable state. According to eq. (11), 
t∞=TI(b1+b2+b3+b4)=6·(0.3+0.3+0.3+0.3)=7.2t.u. This 
result also agrees with the simulated t∞, shown in Fig. 2c. 
These simulation results prove the correctness of the 
mathematical description and step analysis of FLL4. FLL4 
takes four steps to reach the stable state. FLL4 takes only one 
step to reach the stable state, looking from the discrete time 
when all parameters b1, b2, b3, and b4 are taken in the 
calculation.   

 

 
Fig. 2 – The output TO¥ reaches TI in four steps. The system is stable 

regardless of the values of FLL4 parameters: a. t¥=TI (Sum of parameters 
b, Sb=1), b. t¥<TI (Sb<1) and c. t¥>TI (Sb>1). 

4. DEVELOPMENT OF THE TIME FIR DIGITAL 
FILTER BASED ON FLL4  

Since we have mathematically proven and demonstrated 
through simulation that the FLL4 model is an unconditionally 
stable system, we can modify its parameters without altering 
its functionality by adjusting the coefficients of a digital 
filter. Unlike [1–4], where we changed the system 
parameters in the algorithm for the output period TOk, in this 
example, we will do the same, but in the algorithm for the 
time difference tk. So the procedure is similar, only we will 
replace the role of the output period TOk with the time 
difference tk. Accordingly, in this case, the filtered TIk will 
appear inside the time differences tk instead of TOk.  

Using its derived transfer functions for FIR FLL4, let's 
now demonstrate the entire process of developing the fourth-
order FIR FLL4 digital filter based on the time differences 
between the input and output periods. The next step is to 
define vectors b4, according to the MATLAB rules for 
definitions of vector “b”. Based on the transfer function 
Ht4(z), shown in eq. (8), the vector bt4 is determined and 
shown in eq. (13). In the same way, based on the transfer 

function HTO4(z), shown in eq. (9), the vector bTO4 is 
determined and shown in eq. (14).   

 𝑏-# = [0				𝑏$				𝑏&				𝑏%				𝑏#], (13) 

 𝑏./# = [(𝑏$ + 1)					(𝑏& − 𝑏$)					(𝑏% − 𝑏&)		  
 (𝑏# − 𝑏%)					(−𝑏#)], (14) 

As it was described in [3,4], we will use the theory of FIR 
digital filter and the corresponding its MATLAB application 
software to develop FIR FLL4 digital filter. To do that we 
will replace the system parameters of FIR FLL4 with the 
digital filter coefficients. According to refs. [3,4], the order 
of the digital filter, whose coefficients are to be used instead 
of the parameters of the FIR FLL4, must be one order lower 
than the order of the IIR FLL4. That is the FIR digital filter 
of the third order DF3, whose transfer function is shown in 
eq. (15). The corresponding vector bDF3, is shown in eq. (16). 
Assigning the suffix “d” to the digital filter coefficients 
signifies that they belong to the digital filter DF3. Let us now 
design a low-pass digital filter of the third order FIR DF3, 
defined by the cutoff frequency fg=2500 Hz and sampling 
frequency fs=28000 Hz. If we choose triangle windowing, 
using the MATLAB command "fir1", we can get the vector 
"bd" of the filter coefficients as bd = fir1 (N, fn, triang (N+1)), 
where N=3 and the normalized cutoff frequency fn = 
fg/(fs/2). This command gives the next coefficients for FIR 
digital filters: b0d=0.1152, b1d=0.3848, b2d=0.3848 and 
b3d=0.1152. If we use any other kind of windowing, 
supported by MATLAB, the coefficients would not be the 
same. If we compare the transfer functions Ht4 and HDF3, we 
will note that both of them consist of four parameters or 
coefficients. We will adopt the calculated coefficients 
instead of the parameters and use them in Ht4(z) in a way 
that b1=b0d, b2=b1d, b3=b2d and b4=b3d. If we enter the 
proposed parameters into eq. (8), Ht4(z) changes into eq 17). 
The obtained values of the coefficients satisfy eq. (11), 
which means that for these coefficient values, t4¥=TI, 
according to eq. (10). Based on eqs. (15) and (17), the 
relation between the transfer functions Ht4(z) and HDF4(z) is 
shown in eq. (18). Replacing the parameters with the 
coefficients in eq. (13), bt4 will turn into eq. (19). Replacing 
the system parameters with the coefficients in eq. (14), we 
get new vector bTO4 of the transfer function HTO4, shown in 
eq. (20).  

 𝐻01%(z) =
z3𝑏0𝑑+𝑧2𝑏1𝑑+𝑧𝑏2𝑑+𝑏3𝑑

𝑧3 , (15) 

 𝑏01% = [𝑏'2							𝑏$2							𝑏&2							𝑏%2], (16) 

 𝐻3#(z) =
z3𝑏0𝑑+𝑧2𝑏1𝑑+𝑧𝑏2𝑑+𝑏3𝑑

𝑧3 𝑧4$, (17) 

    𝐻3#(z) = 𝐻01%(z) ∙ 𝑧4$, (18) 

  𝑏3# = [0				𝑏'2				𝑏$2				𝑏&2				𝑏%2] = [0				𝑏01%], (19) 

 

 𝑏./# = [(𝑏'2 + 1)					(𝑏$2 − 𝑏'2)					(𝑏&2 − 𝑏$2)		  
 (𝑏%2 − 𝑏&2)					(−𝑏%2)]. (20) 

5. PRESENTATION OF THE FUNCTIONING OF 
FLL4 IN THE TIME AND FREQUENCY DOMAIN 

To determine the frequency responses of HDF3 and Ht4, we 
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need vectors bDF3 and bt4, which are defined in eqs. (16) and 
(19). Based on these vectors and using Matlab commands 
freqz (bt4, 1024, fs) and freqz (bDF3, 1024, fs), the frequency 
responses of FIR FLL4 and FIR DF3, are determined and 
presented in Fig. 3 for half of the sample rate. It can be seen 
that the magnitudes of the FIR DF3 and FIR FLL4 are 
identical. Since both FIR FLL4 and FIR DF3 are the FIR 
digital filters, their phases are linear. According to eq. (18), 
the ratio Ht4(z)=HDF(z)3∙z-1 means that FIR FLL4 will 
introduce an additional delay of -2π [rad] on the output signal 
in comparison to the phase that the digital filter makes on its 
output signal. Note that if we consider only half of the sample 
rate, this delay will be -π [rad]. It can be seen in Fig. 3 that 
the phases of the two systems introduced into the output 
signals differ by an expected 180°, for half of the sample rate. 
This result demonstrates that the adaptation of the fourth-
order FLL4, designed to function as a third-order FIR digital 
filter, has been successfully achieved. 

 

 
Fig. 3 – Magnitudes and phases of the frequency responses of Ht4(z) and 

HDF3(z). 

Let us suppose that the input period TIk is defined as 
TIk=6+S1(k)+S2(k)[t.u.], where S1(k)=5∙sin[2π/fs·f1∙k] and 
S2(k)=5∙sin[2π/fs∙f2∙k]. Suppose that the values of 
frequencies are f1=500 Hz and f2=13000 Hz. Note that the 
frequency f1 is less than the cutoff frequency fg=2500 Hz and 
the frequency f2 is greater than fg. The first step in this 
presentation is to form a vector TI of 28000 values of TIk, 
using the above equation for TIk. Based on the vector TI, the 
output vector t = filter (bt4, 1, TI) is determined. This vector 
was also formed in simulation based on eq. (1). After that, 
using the "fft" command, the input and output vectors of FIR 
FLL4 are formed as X = fft (TI) and Y = fft (t). Finally, using 
the command "stem", stem (abs (X)) and stem (abs (Y)), the 
spectrums of the input TI and output t are presented in Fig. 
4. These spectrums present the absolute values of the 
amplitudes, covering the whole sample rate. They appear as 
positive values in the symmetric second half of the sample 
rate. It is visible in Fig. 4 that signal S1 at 500 Hz is not 
attenuated, since f1 is less than the cutoff frequency fg=2500 
Hz. This agrees with the magnitude of the FIR FLL4 
frequency response, shown in Fig. 3, since at f1=500 Hz, the 
attenuation is zero. At the same time, signal S2 at 13000 Hz 

is suppressed in Fig. 4, because f2=13000 Hz is greater than 
the cutoff frequency fg. 

 Let us now present the described processing in the time 
domain, in Fig. 5. All signals in Fig. 5 are generated by the 
simulation of the supposed input TIk and the output tk+4, 
given by eq. (1). All signals are presented in 112 steps. The 
initial conditions in Fig. 5 are t0=0 t.u. and TI0=TI=6 t.u. 

 
 

Fig. 4 – The component of S2 signal exists in the spectrum of TI, but it is 
eliminated from the spectrum of t. 

Signal S1k is presented in Fig. 5a. Since the frequency of 
S1k is f1=500 Hz and the sampling frequency fs=28000 Hz, it 
means that signal S1k is sampled 28000/500=56 times per 
period. Signal S2k is presented in Fig. 5b. Since the frequency  
 

 
Fig. 5 – The simulation of the input and output signals of FIR FLL4, using 

supposed TIk and tk given by eq. (1). 

of S2k is f2=13000 Hz, it means that signal S2k is sampled 
only 28000/13000=2.15 times per period. Due to that, signal 
S2k is highly deformed. Note that if the number of samples 
per period is equal to or less than 2, the sampled signal will 
not appear in the spectrum. The input TIk, as the sum of 6 t.u, 
S1k, and S2k, is presented in Fig. 5c. Figure 5d shows TIk and 
tk. Signal tk is almost identical to S1k, while signal S2k is 
eliminated. This is in agreement with Fig. 4, where we can 
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see that, in the output spectrum of tk, the component of 
13000 Hz belonging to S2k has been eliminated. The identical 
results of the simulations in the time domain, shown in Fig. 
5, with the results of the analysis in the frequency domain, 
shown in Figs. 3 and 4 are proof that the entire previous 
analysis of FIR FLL4 is correct. 

One of the essential features of the described FLL4 
algorithm is the ability to track rapid changes in the direction 
coefficient of the input signal. We can see in Fig. 6 how the 
output period TOk tracks the input period TIk, which is the 
sum of signals S1 and S2 raised to a level of 6 t.u. Only the 
first 14 steps of the enlarged TOk and TIk signals are shown 
in Fig. 6. Even though the signal S2 is needle-shaped and 
rapidly changes the direction coefficient, we can see that the 
output period very quickly reduces the difference between 
the initial conditions TO0 and TI0 to zero error. After four 
steps, the output period TOk tracks TIk with a negligible error 
that is generated when the direction coefficient of TIk 
changes by almost 180 degrees. 

 

         
Fig. 6 – Despite the rapid changes in the direction coefficient of the input 
signal and the initial difference, TOk tracks TIk almost without error after 

four steps. 

Let us now demonstrate why the described algorithm is 
essential for the realization of time-domain FIR digital filters. 
If we want to realize, for instance, a high-pass digital filter 
based on FLL11 (FLL of eleventh order), we should use the 
coefficients of digital filter DF10 instead of the parameters of 
FLL11. Let us first design a tenth-order FIR digital filter, DF10, 
with a cutoff frequency of fg = 10000 Hz and a sampling 
frequency of fs = 28000 Hz. Using the MATLAB command 
"fir1", we can get the vector "bd" of the filter coefficients as 
bd=fir1(N, fn, ‘high’), where N=10 and the normalized cutoff 
frequency fn=fg/(fs/2).  

This command gives the next coefficients for FIR DF10 
digital filter: b0d=0.0051, b1d= -0.0060, b2d=-0.0190, 
b3d=0.1095, b4d= -0.2349, b5d=0.2956 b6d=-0.2349 b7d=0.1095 

b8d=-0.0190 b9d=-0.0060 and b10d=0.0051. Note that the sum 
of all coefficients gives 0.0053. This sum is not equal to one, 
as in the case of FLL4, eq. (11). For all FIR FLLs in refs. [1 to 
10], the algorithms were defined by the output TOk. We have 
seen that for the systems to be functional, the sum of the 
parameters "b" must be equal to one. It turns out that we are 
unable to adapt FLL11 to function as a FIR high-pass digital 
filter if the algorithm is defined by the output period TOk. 
Instead, in TOk, the digital filter algorithm is incorporated into 
k, as previously described for FLL4. Due to the unconditional 
stability of that model, we can use the same described 
approach but for FLL11 instead of FLL4. If we adopt the 
presented coefficients of the DF10 digital filter instead of the 
FLL11 parameters, we can, in the same way as for FLL4, 
present the input and output spectra using the same input 
signal TIk. These spectra are presented in Fig. 7. We can see 
that the zero component and the component of signal S1 are 

eliminated from the output spectrum, because their 
frequencies are less than fg=10000 Hz. In contrast, the 
component of signal S2 kept the same value as in the spectrum 
of the input signal, due the fact that the frequency of S2 is 
higher than fg. 

It can be concluded that FLL11, which is implemented in 
the same way as FLL4, functions as a Time-FIR high-pass 
digital filter, even though the sum of its parameters is not 
equal to unity. 

 

 
Fig. 7 – The component of S1 is eliminated from the spectrum of t.  

The component of S2 signal kept the same value in both spectra. 

6. CONCLUSION  
As a continuation of the development of Time-FIR digital 

filters based on the processing of periods, refs. [3, 4], this is 
the first article in the literature that illustrates how the time 
differences between the input and output periods can be used 
to filter the period of the input pulse signal. In the previous 
articles describing this type of frequency-locked loop, it was 
indicated that these systems have three outputs that contain 
information about the input signal. It was also shown that if 
the basic algorithm of such systems is expressed within the 
output period, then the sum of all parameters of such a 
system must be equal to unity for the system to be stable. 
However, the sum of coefficients "b" in FIR classical digital 
filters, whose coefficients are used in this implementation, is 
not always equal to unity. In such cases, the described 
systems cannot be used as time-digital filters if the digital 
filter algorithm is built into the output period. However, this 
article demonstrates that the defect can be overcome by 
implementing the function of a classical digital filter in the 
time difference, rather than in the output period. Thanks to 
this approach, any classical digital filter can be used for the 
realization of the corresponding Time-FIR digital filter. 

In addition, it is worth pointing out that this approach uses 
discrete time defined by the pulses of an input signal, which 
makes it possible to define an unconditionally stable FLL. 
Compared to the previously described FLLs, this FLL allows 
for complete freedom in choosing the system parameters, 
thereby facilitating the solution of a broader set of conflicting 
technical requirements. 

At the same time, this article illustrates how great the 
possibilities are in the application of the systems based on 
the processing of the periods and time differences of the 
impulse signals. One of the possible aims in this area could 
be to develop a unique FLL system that simultaneously 
filters the input signal in two ways on its separate outputs, 
using two different types of digital filter algorithms. 



216 Time-digital filter based on the time differences 6 
 

ACKNOWLEDGEMENTS 
The Ministry of Science and Technology of the Republic 

of Serbia supported this article through project TR 32047. 

Received on 8 March 2024 

REFERENCES 
1. Dj.M. Perišić, Generalization of the time infinite impulse response 

digital filters, Rev. Roum. Sci. Techn. – Électrotechn. et 
Énerg., 69, 3, pp. 327–322 (2024). 

2. Dj.M. Perišić, New kind of Ifinite impulse response digital filters 
intended for pulse signal periods, evenechn. – Électrotechn. et 
Énerg., 69, 2, pp. 61–66 (2024). 

3. Dj.M. Perišić, Digital filters intended for pulse signal periods, Rev. 
Roum. Sci. Techn. – Électrotechn. et Énerg., 67, 2, pp. 161–166 
(2022). 

4. Dj.M. Perišić, Frequency locked loops of the third and higher order, 
Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 66, 4, pp. 261–
266 (2021). 

5. Dj.M. Perišić, M. Perišić, D. Mitić, M. Vasić, Time recursive frequency 
locked loop for the tracking applications, Rev. Roum. Sci. Techn. 
– Électrotechn. et Énerg., 62, 2, pp. 195–203 (2015). 

6. Dj.M. Perišić, A. Zorić, M. Perišić, V. Arsenović, Lj. Lazić, Recursive 
PLL based on the Measurement and Processing of Time, 
Electronics and Electrical Engineering, 20, 5, pp. 33–36 (2014). 

7. Dj.M. Perišić, A. Zorić, M. Perisić, D. Mitić, Analysis and Application 
of FLL based on the Processing of the Input and Output Periods, 
Automatika, 57, 1, pp. 230–238 (2016). 

8. Dj.M. Perišić, M. Bojović, Multipurpose time recursive PLL, Rev. 
Roum. Sci. Techn. – Électrotechn. et Énerg., 61, 3, pp. 283–288 
(2016). 

9. Dj.M. Perišić, M. Perišić, S. Rankov, Phase shifter based on a recursive 
Phase Locked Loop of the second order, Rev. Roum. Sci. Techn. – 
Électrotechn. et Énerg., 59, 4, pp. 391–400 (2014). 

10. Dj.M. Perišić, A. Zorić, Dj. Babić, Dj. Perišić, Decoding and Prediction 
of Energy State in Consumption Control, Rev. Roum. Sci. Techn. 
– Electrotechn. et Energ., 58, 3, pp. 263–272 (2013). 

11. W.C. Lindsey, C.M. Chie, A survey of digital phase-locked loops, 
Proceedings of the IEEE, 69, 4, pp. 410-431 (1981). 

12. D. Jovcic, Phase locked loop system for FACTS, IEEE Transactions on 
Power Systems, 18, pp. 2185–2192 (2003). 

13. A.S.N. Mokhtar, B.B.I. Reaz, M. Maruffuzaman, M.A.M. Ali, Inverse 
park transformation using Cordic and phase-locked loop, Rev. 
Roum. Sci. Techn.-Electrotechn. Et Energy, 57, 4, pp. 422–431 
(2012). 

14. C.C. Chung, An all-digital phase-locked loop for high speed clock 
generation, IEEE Journal of Solid-State Circuits, 38, Issue 2, pp. 
347-359 (2003). 

15. F. Amrane, A. Chaiba, B.E. Babes, S. Mekhilef, Design and 
implementation of high-performance field-oriented control for 
grid-connected doubly fed induction generator via hysteresis rotor 
current controller, Rev. Roum. Sci. Techn. Et Energy., 61, 4, pp. 
319–324 (2016). 

16. M. Büyük, M. İnci, M. Tümay, Performance comparison of voltage 
sag/swell detection methods implemented in custom power devices, 
Rev. Roum. Sci. Techn. – Electrotechn. et Energ., 62, 2, pp. 129–
133 (2017). 

17. L. Joonsuk, B. Kim, A low noise fast-lock phase-locked loop with 
adaptive bandwidth control- solid-state circuit, IEEE 
Journal, 35, 8, pp. 1137–1145 (2000). 

18. D. Abramovitch, Phase-locked loops: a control centric tutorial, 
American Control Conference-2002, 1, pp. 1–15 (2002). 

19. R. Vich, Z Transform Theory and Application (Mathematics and 
Applications), Springer (1987). 

20. S.W. Smith, Digital Signal Processing, California Technical Publishing 
(1999). 

21. G. Bianchi, Phase-Locked Loop Synthesizer Simulation, Nc-Hill, Inc. 
(2005). 

22. W.F. Egan, Phase-Lock Basics, John Wiley and Sons (2008). 
23. B.D. Talbot, Frequency Acquisition Techniques for PLL, Wiley-IEEE 

Press (2012). 
24. C.B. Fledderman, Introduction to Electrical and Computer 

Engineering, Prentice Hall (2002). 
25. M. Gardner, Phase Lock Techniques, Wiley-Interscience (2005). 
26. S. Winder, Analog and Digital Filter Design, Elsevier Inc. (2002). 

 


