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Fault location in transmission lines is critical to ensure the power systems' reliable and efficient operation. Accurate fault detection 
and localization are essential to minimize downtime, prevent cascading failures, and maintain the overall stability of the electrical 
grid. Over the years, various fault location methods have been proposed, ranging from traditional model-based approaches to 
more sophisticated artificial intelligence techniques. This research presents two fault location methodologies: the Atom search 
optimization metaheuristic approach (ASO) and machine learning (ML) with cubic spline models. We evaluate the performance 
of both approaches by considering different fault types, fault distances, and fault resistance. We analyze accuracy and 
computational efficiency. The findings reveal that the Metaheuristic Approach demonstrates robustness in fault detection and 
localization under diverse conditions but may suffer from higher computational overhead. In contrast, the hybridization of 
machine learning and metaheuristic exhibits promising potential in achieving real-time fault localization with improved accuracy. 
 

1. INTRODUCTION 

With the ever-increasing demand for reliable and stable 
power supply, efficient fault location techniques have become 
paramount in modern power systems. Power system faults, 
such as short-circuits and line failures, can lead to widespread 
outages and economic losses and even jeopardize public 
safety. Therefore, timely and accurate fault location is of 
utmost importance to swiftly restore power and minimize the 
impact of disruptions. Traditional fault location methods, like 
impedance-based techniques, have been reliable tools for 
decades. However, with power systems' growing complexity 
and size, conventional approaches face limitations in handling 
intricate network structures and large-scale systems.  

In recent years, significant advancements in computational 
intelligence and data-driven methods have led to integrating 
metaheuristic algorithms and machine learning techniques in 
fault location practices. These tools effectively address the non-
linearity and high dimensional challenges inherent in fault 
location within power systems. They can effectively search for 
optimal or near-optimal solutions in a vast solution space, 
enabling more accurate and efficient fault location. On the other 
hand, the rapid growth of machine learning has opened new 
possibilities in various fields, including power system fault 
diagnosis. Machine learning techniques have remarkably 
succeeded in pattern recognition, classification, and regression 
tasks, particularly supervised and unsupervised. Leveraging 
historical data from power systems, machine learning models 
can learn intricate fault patterns and accurately identify fault 
locations. Integrating metaheuristic algorithms and machine 
learning techniques in fault location brings forth a synergistic 
approach that combines the robust optimization capabilities of 
metaheuristics with the data-driven insights of machine 
learning. This amalgamation has the potential to revolutionize 
fault location practices in power systems and enhance their 
reliability and resilience. 

Recently, numerous approaches have been proposed for 
pinpointing fault locations in electrical lines. Harmony search 
(HS) and teaching learning-based optimization (TLBO) 
techniques for fault location estimation in two-terminal 
transmission lines [1]. The fault location method employs 
Field programmable gate array (FPGA) combined with 

artificial neural networks (ANN) theory [2]. Linear 
optimization methods like the simplex method and Nelder-
Mead, which are applied by [3]. Harmony search optimization 
for estimating fault distance in simulated cases [4]. Genetic 
algorithms are implemented [5] to compare waveforms from 
digital fault recorders with simulated waves. Fault location 
approach for VSC-HVDC Systems based on NSGA-II and 
discrete wavelet transform [6]. An optimization-based fault 
location algorithm for series-compensated power transmission 
lines [7]. A Category boosting machine learning algorithm for 
breast cancer prediction [8].  

Reference [9] suggested that using automatic feature 
extraction by transfer learning has shown promising results in 
transmission line protection. This approach has been applied 
in various fields, including wind turbine fault modeling and 
classification using cuckoo-optimized modular neural 
networks [10] and deep vein thrombosis identification via the 
deep vein net, a deep learning network optimized by the sooty 
tern algorithm [11]. Additionally, real-time diagnosis of 
battery cells for stand-alone photovoltaic systems using 
machine learning techniques has been explored [12]. Another 
novel fault location technique for transmission lines utilizes 
positive sequence signals in a single-ended manner [13]. 

This paper presents a comprehensive survey of state-of-the-
art research on fault location in power systems, focusing 
specifically on utilizing atom search optimization 
metaheuristic [14] and machine learning methods with cubic 
spline models [15]. We aim to explore the various applications 
of these techniques, evaluate their performance in different 
scenarios, and highlight their advantages and limitations. This 
method is implemented on a system comprising two 
generators connected to a high-voltage transmission line to 
assess its operational performance. 

The paper's structure is organized as follows: section 3 
introduces the mathematical formulation of fault location, 
followed by an in-depth discussion of the application of atom 
search optimization and machine learning techniques in fault 
location. Subsequently, section 4 presents the simulation 
results. Finally, section 5 concludes the paper by summarizing 
the key findings and emphasizing the significance of 
integrating metaheuristic and machine learning approaches for 
fault location in power systems. 

mailto:guerraiche_khaled@esgee-oran.dz
mailto:abbou_aminebouadjmi@esgee-oran.dz
hp
Comment on Text
l mic



270 Fault detection and location in high voltage transmission lines 2 

 

By exploring the cutting-edge research and advancements 

in this domain, this paper seeks to shed light on the promising 

path forward for fault location methodologies, empowering 

power system engineers and operators with innovative tools to 

maintain the stability and reliability of modern power grids. 

2. MATHEMATICAL FORMULATION OF FAULT 

LOCATION 

Assume that a fault has taken place at point L along the 

transmission line as shown in Fig. 1. It is possible to deduce 

the fault point's voltage in terms of the measured parameters 

at terminal A [16]. The Fig. 2, shows a single-phase 

transmission. 

 

Fig. 1 – Illustrates the distributed time domain model for the AL segment. 

 

Fig. 2 – Single-phase representation of the transmission line. 

Equation 1 combines the effects of delayed voltages and 

currents, as well as resistive losses, to determine the voltage 

VyA(t) at a specific point in the network at time t. It considers 

propagation delays and the complex interactions between 

network elements, thereby allowing for precise modeling of 

electromagnetic transients. 

𝑉𝑦𝐴(𝑡) =
1

2(𝑍𝐴)2 {(𝑍𝐴
′

𝑦𝐴

2
) [𝑉𝐴(𝑡 − ε𝑦𝐴) − 𝑍𝐴𝑦𝐴

′ 𝑖𝐴(𝑡 − ε𝑦𝐴)] 

+ (𝑍𝐴
′′

𝑦𝐴

2
) [𝑉𝐴(𝑡 − ε𝑦𝐴) + 𝑍𝐴𝑦𝐴

′′ 𝑖𝐴(𝑡 − ε𝑦𝐴)] −
𝑅𝑦𝐴

2

8
𝑉𝐴(𝑡) −

𝑅𝑦𝐴

2
𝑍𝐴𝑦𝐴

′ 𝑍𝐴𝑦𝐴
′′ 𝑖𝐴(𝑡)}.                               (1) 

Using a comparable method, the voltage at the fault location 

can be represented in terms of the data recorded at terminal B [6]: 

𝑉𝑦𝐵(𝑡) =
1

2(𝑍𝐴)2 {(𝑍𝐴
′

𝑦𝐵

2
) [

𝑉𝐵 (𝑡 + (𝑇 − ε𝑦𝐴))

−𝑍𝐴𝑦𝐵
′ 𝑖𝐵 (𝑡 + (𝑇 − ε𝑦𝐴))

] +

(𝑍𝐴
′′

𝑦𝐵

2
) [𝑉𝐵 (𝑡 − (𝑇 − ε𝑦𝐴)) + 𝑍𝐴𝑦𝐵

′′ 𝑖𝐵 (𝑡 − (𝑇 − ε𝑦𝐴))].                          

(2) 

wherein: 𝑅𝑦𝐵 – resistance of the BL segment, 𝑍𝐴𝑦𝐵
′ = 𝑍𝐴 +

𝑅𝑦𝐵

4
, 𝑍𝐴𝑦𝐵

′′ = 𝑍𝐴 −
𝑅𝑦𝐵

4
; T is a time required for the wave to 

propagate from the sending end (A) to the receiving end (B). 

Given that the fault point's voltage should remain consistent 

regardless of the data used for its calculation, the two 

obtained voltages, VyA and VyB, must be equivalent across all 

sampling instances.  

As a result, the following equation must hold true at the 

actual fault point (L) for all moments [16]: 

𝐹(𝑉𝐴, 𝑖𝐴, 𝑉𝐵 , 𝑖𝐵 , 𝑡, ε𝑦𝐴) = 𝑉𝑦𝐴(𝑡) − 𝑉𝑦𝐵(𝑡) = 0.    (3) 

The distance from the sending terminal (A) to the fault 

point, denoted as y, is not overtly present in (3), it's embedded 

within the surge travel time, 𝜀𝑦𝐴. Additionally, this travel time 

isn't explicitly listed as a variable in this equation; rather, it's a 

value upon which the voltages and currents rely [16]: 

in objective function (𝑛𝑦𝐴) = ∑ 𝐹𝑂2(𝑛𝑦𝐴, 𝑝).
𝑁−𝑛𝑦𝐴

𝑘=𝑛𝑦𝐴
 (4) 

where: 𝑛𝑦𝐴 =
ε𝑦𝐴

∆𝑡
, 𝑝 =

𝑡

∆𝑡
, N = total samples, 

∆𝑡 sampling time, 𝑛𝑦𝐴, 𝑝 = arbitrary integers. 

The elusive fault location is determined through the 

minimization of the defined objective function. To elaborate 

further, the initial step involves calculating the value of the 

subsequent equation for every potential fault location [16]: 

∑ 𝐹𝑂2(𝑘) = ∑[𝑉𝑦𝐴(𝑝) − 𝑉𝑦𝐵(𝑝)]
2

.

𝑝𝑝

 (5) 

At the real fault location, (5) should reach its lowest value. 

Consequently, this value must be computed for every potential 

fault location along the transmission line. Among all these 

potential locations, the one where (5) attains the minimum 

value is chosen as the true fault location. 

In this proposed approach, atomic search optimization 

(ASO) is employed to minimize the objective function. 

Section 3.1 will provide further elaboration on this. 

3. ALGORITHM FOR DETERMINING FAULT 

LOCATION 

This section utilizes two distinct methodologies: Atom 

search optimization (ASO) and machine learning. ASO, a 

nature-inspired optimization technique, emulates the 

behavior of atoms in chemical reactions to explore solution 

spaces efficiently. ASO's ability to perform global 

optimization makes it a valuable candidate for addressing 

complex optimization problems. On the other hand, machine 

learning, a data-driven approach, leverages algorithms to 

identify patterns and relationships within data, enabling the 

model to make informed predictions or decisions. The 

integration of ASO and machine learning holds promise in 

enhancing the accuracy and efficiency of solution processes 

by harnessing the strengths of both methods. This section 

elaborates on the synergistic use of ASO and machine 

learning to achieve enhanced performance and more robust 

outcomes in the context of the studied problem. 

3.1. ATOM SEARCH METHOD 

The atom search optimization (ASO) method, proposed by 

Weiguo Zhao [14], operates based on mimicking the 

interactions between atoms in chemical reactions to perform 

optimization tasks. ASO introduces atoms as agents that 

search for optimal solutions by moving within a solution 

space. Each atom is assigned a position, and their movements 

are influenced by their energy levels, which are determined by 

the objective function being optimized. The atoms' behaviors 

are guided by various forces, including atomic forces, metallic 

attraction, and van der Waals forces, all of which drive them 

toward better solutions. Weiguo Zhao [14], innovative 

approach combines principles from chemistry and 

optimization to create an efficient algorithm capable of 

tackling complex optimization problems. This fusion of 

scientific concepts from different domains underpins the ASO 

method's effectiveness and underscores modern optimization 

techniques' interdisciplinary nature. Atoms maintain varying 

distances from each other, experiencing reciprocal forces of 

attraction and repulsion. 

3.2. MACHINE LEARNING METHOD 

Machine learning enables computers to learn from data and 

progressively enhance their performance without being 
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explicitly programmed. It revolves around the concept of 

algorithms identifying patterns, extracting insights, and making 

predictions based on input data. The process generally involves 

three key components: data, a model, and an optimization 

algorithm. Initially, a dataset is collected, encompassing 

relevant features and corresponding outcomes. The model, often 

a mathematical representation, is then developed to capture 

relationships within the data. Through an iterative process, the 

model is refined using an optimization algorithm that adjusts its 

parameters to minimize the difference between predicted 

outcomes and actual data. This continuous iteration, known as 

training, fine-tunes the model's performance. Once the model is 

trained, it can be deployed to make predictions on new, unseen 

data. As more data becomes available, the model can adapt and 

improve its predictions, showcasing the self-learning aspect of 

machine learning. The efficacy of machine learning hinges on 

its capability to generalize from training data to make accurate 

predictions on new, unseen instances, effectively automating 

complex tasks and uncovering insights that might be 

challenging for traditional rule-based programming. 

Applying machine learning techniques has brought 

significant advancements to fault localization in high-voltage 

transmission lines. With these power systems' complex and 

expansive nature, accurate and timely identification of faults is 

crucial for ensuring reliable and efficient operation. Machine 

learning approaches, driven by their ability to process extensive 

datasets and discern intricate patterns, have proven invaluable 

in enhancing fault detection and localization processes. This 

paper delves into the utilization of machine learning algorithms 

to improve the accuracy and speed of fault localization in high-

voltage transmission lines, shedding light on the innovative 

solutions they offer to tackle the challenges posed by these 

critical infrastructure components. 

3.2.1. Collecting data 

Collecting data for machine learning, specifically targeted at 

fault detection in a 300 km long electrical transmission line with 

variable fault resistances ranging from 1 to 50 Ω, requires a 

careful and strategic approach. To ensure the effectiveness of 

the model, the data collection process should encompass a wide 

range of fault scenarios that reflect the real-world conditions the 

model will encounter. This involves creating synthetic faults 

across the entire length of the transmission line, varying the 

resistance values within the specified range. The dataset should 

also include a diversity of fault types, such as single-phase to 

earth fault, isolated two-phase/to earth and three-phase, to 

ensure the model's versatility. For a fault resistance range of 0 

to 50 Ω with a step size of 1 Ω, a transmission line spanning 

300 km with a step size of 1 km, and a voltage range of ±10 % 

between the two terminals with a step size of 1 kV, we would 

have a total of 512998080, resulting in 97 593 600 

simulations required for data collection. However, this 

extensive number of simulations proves unfeasible for standard 

computing capabilities. The solution in this context is to 

strategically select the most influential variables that lead to 

minimal error during the localization process. 

If we take VA = VB = V we will have just 1 219 920 

simulations to do to collect the data. The short-circuit current 

can be modeled as a function depending on the supply voltage, 

resistance and fault distance parameters. So, there are three 

variables that influence the short-circuit current value. 

The pseudocode for data collection for all types of faults is 

mentioned in Fig. 3. 

Machine learning algorithm 

Enter N = (Nominal voltage × 10% × 2) / Step, where Step is the voltage 

increment step, and the optimal step is 1 kV. 
Enter M, the maximum desired value of fault resistance, and Step R, which 

is the resistance increment step, with the optimal step being 1 Ω. 

Enter l, the total distance of the transmission line in kilometers, with the 
optimal step being 1 km. 

For i = 1:N 

      If i = 1 
         V = Nominal voltage - (Nominal voltage * 10%) 

      Else 

         V = V + Step 
      End If 

               For j = 1:(M+1)/Step R 

                     If j = 1 
                        RF = 0 Ω 

                     Else 

                         RF = RF + Step R 
                     End If 

                             For dis = 1:l 

                                    Fault distance = dis 
                                    Perform a simulation for V, RF, and l for each 

iteration i, j, and dis. 
                                    Collect current data for V, RF, and l for each 

iteration i, j, and dis. 

                             End dis = 1:l 
          End j = 1:(M+1)/Step R 

End i = 1:N  

End Program. 

Fig. 3 – Pseudocode for data collection for all types of faults. 

4. RESULTS 

This section assesses the effectiveness of the presented 

algorithms. The illustration in Fig. 4, depicts a 400 kV three-

phase transmission line spanning 300 km. A fault emerges at 

an arbitrary location L and positioned at a distance x from the 

sending end (A terminal).  

 

 

Fig. 4 – Protection system and its attributes. 

Utilising MATLAB/Simulink software, the measurements 

are extracted and then imported into the atom search algorithm 

and machine learning with MATLAB. The precision of the 

introduced fault location technique has been assessed for both 

symmetric and asymmetric faults across various fault 

positions, and the error percentage, computed according to (6), 

is outlined in Table 1, 2 and 3 

𝑒(%) = |
𝑦𝑐𝑜𝑚𝑝 − 𝑦𝑟𝑒𝑎𝑙

𝑙𝐴𝐵

| × 100 (6) 

ycomp – computed fault position, yreal – real fault location,  

lAB – entire length of the transmission line. 

Figures 5, 6, and 7 illustrate the effect of different fault 

locations along the transmission line with various fault 

resistance values, RL = 1, 10, and 50 Ω. As the fault moves 

further from the relay, the detection accuracy is affected, 

increasing the error for TLBO and HS with almost negligible 

values. 
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Table 1 

Location results for the different methods for a fault resistance RL= 1 Ω 

RL = 1 Ω 

Fault 

Type 

Real Fault 

Location 

(km) 

TLBO [1] HS [1] ASO ML (spline) 

Computed 

distance 

(km) 

Error 

(%) 

Computed 

distance 

(km) 

Error 

(%) 

Computed 

distance 

(km) 

Error 

(%) 

Computed 

distance 

(km) 

Error 

(%) 

A
B

C
G

 

5 4.986 0.0046 5.095 0.0316 5.0133 0.0044 5 1.0136e-06 

25 24.928 0.024 24.947 0.0177 25.0112 0.0037 25 4.3631e-06 

50 49.857 0.048 49.906 0.0314 49.967 0.0109 50 1.6448e-05 

100 99.99 0.0033 100.471 0.01571 99.9618 0.0127 99.9998 5.1666e-05 

150 150.13 0.133 150.236 0.0786 149.9842 0.0052 149.9998 8.0225e-05 

200 199.979 0.0069 200.351 0.1170 199.979 0.0070 199.9998 8.3007e-05 

250 250.389 0.1296 250.351 0.1038 249.9737 0.0087 249.9999 4.2674e-05 

275 275.152 0.0507 275.511 0.1702 274.9849 0.0050 275 2.6527e-13 

295 294.985 0.0050 294.990 0.0033 294.9828 0.0057 295.0002 5.2678e-05 

A
B

G
 

5 5.073 0.0244 5.299 0.0998 4.9856 0.0047 5 6.9747e-06 

25 24.928 0.0240 24.721 0.0931 24.9558 0.0147 25 6.8186e-06 

50 49.860 0.0467 50.10 0.0334 50.0224 0.0074 50 4.737e-15 

100 99.991 0.0031 100.1826 0.0609 99.9618 0.0127 99.9999 2.2147e-05 

150 150.396 0.1320 150.2943 0.0981 149.9842 0.0052 149.9999 3.8613e-05 

200 200.041 0.0137 200.063 0.0210 199.979 0.0070 199.9999 3.0611e-05 

250 250.370 0.1233 250.646 0.2115 250.0291 0.0097 250.0001 1.8686e-05 

275 275.19 0.0632 274.419 0.0193 274.9295 0.0234 275.0002 5.6075e-05 

295 294.997 0.0010 294.83 0.00551 294.9551 0.0149 295.0002 5.4908e-05 

A
G

 

5 4.992 0.0028 5.032 0.0105 4.3209 0.2263 5 5.8302e-06 

25 24.98 0.0067 25.246 0.0821 25.0073 0.0024 25 5.6568e-06 

50 49.86 0.048 50.204 0.0680 49.9956 0.0014 50 0 

100 99.993 0.0023 100.0303 0.0101 99.9722 0.0092 99.9999 2.0447e-05 

150 150.13 0.04 150.2967 0.0989 149.9677 0.0107 149.9999 3.6611e-05 

200 199.996 0.0015 200.131 0.0436 199.9823 0.0059 199.9999 2.7689e-05 

250 250.128 0.0427 250.441 0.1469 249.9968 0.0010 250 1.3079e-05 

275 275.044 0.013 275.121 0.0402 274.9851 0.0049 275.0001 2.6178e-05 

295 295.005 0.0016 295.13 0.0438 295.0382 0.0127 295 1.3388e-05 

A
B

 

5 4.986 0.0048 4.762 0.0793 4.8748 0.0417 5 9.2963e-06 

25 24.928 0.0240 24.721 0.0931 24.9835 0.0054 25 7.4072e-06 

50 49.860 0.0467 50.10 0.0334 50.0224 0.0074 50 4.737e-15 

100 99.991 0.0031 100.1826 0.0609 99.9618 0.0127 99.9999 2.236e-05 

150 150.396 0.1320 150.2943 0.0981 149.9842 0.0052 149.9999 3.8559e-05 

200 200.041 0.0137 200.063 0.0210 199.979 0.0070 199.9999 3.0179e-05 

250 250.370 0.1233 250.646 0.2115 250.0291 0.0097 250.0001 1.8377e-05 

275 275.19 0.0632 274.419 0.0193 274.9572 0.0142 275.0002 6.0355e-05 

295 294.983 0.0057 294.91 0.0287 295.149 0.0496 295.0003 9.9253e-05 

 

  

  

Fig. 5 – TBLO, HS, ASO, and ML fault location results along the transmission line with different fault locations and fault resistance RL = 1 Ω. 
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Table 2 

Location results for the different methods for a fault resistance RL= 10 Ω. 

RL = 10 Ω 

Fault 

Type 

Real Fault 

Location 
(km) 

TLBO [1] HS [1] ASO ML (spline) 

Computed 

distance 
(km) 

Error 
(%) 

Computed 

distance 
(km) 

Error 
(%) 

Computed 

distance 
(km) 

Error 
(%) 

Computed 

distance 
(km) 

Error 
(%) 

A
B

C
G

 

5 5.03 0.0099 5.0329 0.0110 5.041 0.0136 5 1.3304e-06 

25 24.928 0.024 25.0435 0.0145 24.9835 0.0054 25 4.2513e-06 

50 49.856 0.048 49.6299 0.0123 49.967 0.0109 50 1.4122e-05 

100 99.989 0.0036 100.1268 0.0423 99.9618 0.0127 99.9999 4.3301e-05 

150 150.3761 0.1253 150.3181 0.1060 149.9842 0.0052 149.9998 7.8879e-05 

200 199.9814 0.0062 200.123 0.0410 199.979 0.0070 199.9998 7.3405e-05 

250 250.3839 0.1279 250.433 0.01443 250.0291 0.0097 249.9999 2.491e-05 

275 275.2921 0.096 275.395 0.1317 275.0126 0.0042 275 1.3263e-13 

295 294.983 0.0056 295.254 0.0848 295.0936 0.0312 295 6.1094e-06 

A
B

G
 

5 5.021 0.0099 4.834 0.0553 4.9856 0.0047 5 1.5113e-05 

25 24.931 0.024 25.535 0.1783 25.0112 0.0037 25 9.1017e-06 

50 49.856 0.048 50.0201 0.0067 49.967 0.0109 50 1.1842e-13 

100 99.994 0.0036 100.2034 0.0678 99.9618 0.0127 99.9999 2.3032e-05 

150 150.3759 0.1253 150.3168 0.1056 149.9842 0.0052 149.9999 3.8164e-05 

200 200.0283 0.0062 200.0758 0.0253 199.979 0.0050 199.9999 2.6568e-05 

250 250.353 0.1279 249.922 0.0261 250.0014 0.0004 250 1.0714e-05 

275 275.289 0.096 275.103 0.0344 274.9849 0.0050 275.0001 2.1817e-05 

295 295.010 0.0056 295.184 0.0614 294.8721 0.0426 295.0001 1.9522e-05 

A
G

 

5 4.987 0.0046 5.0667 0.0222 3.7669 0.4110 5 9.6784e-06 

25 24.935 0.0215 25.6832 0.2277 24.9314 0.0228 25 6.8001e-06 

50 49.89 0.048 49.9177 0.0274 49.9386 0.0204 50 4.737e-14 

100 100.021 0.0070 100.0644 0.0215 99.9722 0.0092 99.9999 2.0888e-05 

150 150.396 0.13 150.1103 0.0368 149.9867 0.0044 149.9999 3.6611e-05 

200 200.0686 0.0228 200.1462 0.0487 199.9823 0.0059 199.9999 2.6468e-05 

250 250.3688 0.1229 250.134 0.0447 250.0158 0.0052 250 1.0754e-05 

275 275.289 0.096 275.302 0.1006 275.023 0.0076 275.0001 1.789e-05 

295 294.983 0.0056 295.254 0.0117 295.0213 0.0070 295 8.1369e-06 

A
B

 

5 5.027 0.009 5.0329 0.0110 5.041 0.0136 5 1.597e-05 

25 24.956 0.024 25.1255 0.0418 24.9835 0.0054 25 9.8314e-06 

50 49.874 0.048 50.059 0.0197 49.967 0.0109 50 1.1606e-13 

100 99.995 0.0036 99.987 0.0045 99.9618 0.0127 99.9999 2.3615e-05 

150 150.399 0.1253 150.190 0.0633 149.9565 0.0144 149.9999 3.8273e-05 

200 199.983 0.0062 200.218 0.0726 199.979 0.0070 199.9999 2.7118e-05 

250 250.377 0.1279 250.536 0.1788 250.0014 0.0004 250 1.1928e-05 

275 275.291 0.096 275.145 0.0485 274.9572 0.0142 275.0001 2.4467e-05 

295 294.990 0.0056 295.254 0.0847 294.9551 0.0149 295.0001 1.9893e-05 

 

  
 

  

Fig. 6 – TBLO, HS, ASO, and ML fault location results along the transmission line with different fault locations and fault resistance RL = 10 Ω. 
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Table 3 

Location results for the different methods for a fault resistance RL= 50 Ω

RL = 50 Ω 

Fault 

Type 

Actual Fault 
Location 

(km) 

TLBO [1] HS [1] ASO ML (spline) 

Computed 

distance 

(km) 

Error 

(%) 

Computed 

distance 

(km) 

Error 

(%) 

Computed 

distance 

(km) 

Error 

(%) 

Computed 

distance 

(km) 

Error 

(%) 

A
B

C
G

 

5 5.125 0.0416 5.0576 0.0192 4.9302 0.0232 5 6.9052e-06 

25 25.204 0.0679 25.0026 0.0009 24.9004 0.0331 25 1.594e-05 

50 50.109 0.0362 50.0751 0.0250 49.9393 0.0202 49.9999 3.7436e-05 

100 99.9905 0.0036 100.017 0.0057 99.9895 0.0035 99.9998 6.7968e-05 

150 150.1296 0.0432 150.1721 0.0574 149.9842 0.0052 149.9998 7.0659e-05 

200 199.9796 0.007 199.9816 0.0061 199.979 0.0070 199.9999 3.8344e-05 

250 250.1861 0.062 250.485 0.1615 249.9737 0.0087 250 7.8055e-06 

275 275.2256 0.0752 275.568 0.1893 275.0126 0.0042 275 4.737e-13 

295 294.983 0.0056 295.233 0.0775 299.9131 1.6377 295 9.1599e-07 

A
B

G
 

5 5.119 0.0396 5.487 0.1624 4.9302 0.0232 5.0002 5.8874e-05 

25 25.203 0.0677 25.2774 0.0925 24.9558 0.01473 25.0001 2.7512e-05 

50 50.132 0.0439 50.2442 0.0814 49.9393 0.0202 50 1.6106e-12 

100 99.997 0.0010 100.7873 0.2624 99.9618 0.0127 99.9999 3.1875e-05 

150 150.1317 0.0439 150.0306 0.0102 149.9842 0.0052 149.9999 3.5902e-05 

200 199.98 0.0067 200.2698 0.0899 199.979 0.0070 199.9999 1.6884e-05 

250 250.172 0.0573 250.335 0.1115 249.946 0.0179 250 4.8321e-06 

275 275.2012 0.0671 274.504 0.1654 274.9849 0.0050 275 8.6834e-06 

295 295.006 0.0020 295.002 0.0006 299.9408 1.6469 295 6.3537e-06 

A
G

 

5 4.969 0.0103 4.8292 0.0569 4.9711 0.0096 5.0001 4.6124e-05 

25 25.064 0.0214 25.3089 0.1030 24.9314 0.0228 25.0001 2.011e-05 

50 49.407 0.1976 50.2708 0.0903 49.9576 0.0141 50 1.0137e-12 

100 100.022 0.0072 99.763 0.0792 99.9722 0.0092 99.9999 2.6598e-05 

150 150.1628 0.0543 150.214 0.0713 149.9867 0.0044 149.9999 3.439e-05 

200 200 0.0001 199.807 0.0643 199.9823 0.0059 199.9999 1.8124e-05 

250 250.1813 0.0604 250.344 0.1146 249.9968 0.0010 250 5.2207e-06 

275 275.25 0.833 275.206 0.0686 275.023 0.0076 275 8.7713e-06 

295 294.994 0.0020 294.233 0.0344 295.0023 0.00076 295 5.5303e-06 

A
B

 

5 5.126 0.0419 4.819 0.0602 4.9302 0.0232 5.0002 5.7939e-05 

25 25.141 0.0470 25.0437 0.0146 24.9558 0.0147 25.0001 2.7364e-05 

50 50.122 0.0470 50.1416 0.0472 50.0224 0.0074 50 1.5608e-12 

100 100.032 0.0107 100.2485 0.0828 99.9618 0.0127 99.9999 3.2253e-05 

150 150.123 0.0410 149.9928 0.0024 149.9842 0.0052 149.9999 3.6227e-05 

200 199.992 0.0027 200.0953 0.0318 199.979 0.0070 199.9999 1.7065e-05 

250 250.201 0.0670 250.205 0.0683 250.0014 0.0004 250 4.8256e-06 

275 275.165 0.0550 276.182 0.3941 275.0126 0.0042 275 8.5677e-06 

295 294.996 0.0013 295.147 0.0489 295.0105 0.0035 295 6.045e-06 

  
 

  

Fig. 7 – TBLO, HS, ASO, and ML fault location results along the transmission line with different fault locations and fault resistance RL = 50 Ω. 
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It is observed that the ASO algorithm is completely 
independent of fault resistance, as the behavior is consistent 
with all fault resistance values and types, except for values 
(ABCG and ABG RL = 50), which can be considered out of 
range. One of the most important points to mention here is 
that the ML algorithm is independent of fault resistance and 
fault type along the transmission line, and it does not affect 
its accuracy in fault location detection. 

4.1. IMPACT OF FAULT RESISTANCE  

Fault resistance significantly affects the accuracy of double-
ended fault location methods. To assess the effectiveness of 
the proposed algorithms under varying fault resistances (RL), 
simulations were conducted with different fault resistance 
values of RL (1 Ω, 10 Ω, and 50 Ω). The parameters of the 
remote source impedance remained constant, and fault 
distances varied from 1 km to 300 km. The calculation error 
of fault location under different RL scenarios is summarized 
in Tables 2–4. The maximum error observed was 1.6469 % 
when RL was 50 Ω. Notably, the accuracy remained relatively 
consistent regardless of RL. The three scenarios' results affirm 
the proposed methods' acceptable accuracy. 

4.2. OUTCOME FOR DIFFERENT FAULT TYPES 

The effectiveness of the proposed methods extends beyond 
single-phase-to-ground faults, encompassing various fault 
types. This study evaluates the application of the methods 
under different fault scenarios, including single-phase, two-
phase, two-phase-to-ground, and three-phase faults. For the 
simulations, the fault resistance (RL) was configured at 1 Ω, 
10 Ω, and 50 Ω, while the fault distance (y) ranged from 1 km 
to 300 km. The values of the remote system impedance and 
other parameters were kept constant. The accuracy of fault 
location remains consistent across these fault types, as 
demonstrated by the results in Tables 1,2 and 3. 

4.3. DISCUSSION 

Tables 1 through 3 present the outcomes of the proposed 
techniques (ML & ASO) and methods proposed in the existing 
literature (HS & TLBO). These results encompass fault types, 
distinct fault locations, and fault resistances. The data illustrates 
that ML exhibits a significantly high precision in identifying fault 
locations and boasts the advantage of not relying on specific initial 
conditions to initiate iterations. In contrast, a notable limitation of 
ASO, HS, and TLBO lies in their dependence on initial 
conditions, which can be a significant drawback. 

The fault is situated at a distance of 250 km from the A 
terminal. In this scenario, ML demonstrated its precision by 
pinpointing the fault's location at 249.999 km from the A 
terminal, which is exceptionally close to the accurate 
location  
with an error percentage of only 4.2674.10-5 %. This 
performance surpasses ASO, HS, and TLBO, which registered 
error percentages of 0.0087 %, 0.1038 %, and 0.1296 % 
respectively. Machine learning (ML) consistently exhibited 
highly accurate fault location results, irrespective of the fault 
type (A-B-C-G, A-B-G, A-B, and A-G), regardless of the fault 
resistance. 

Table 4 

Comparison of the four algorithms in terms of timing considerations with 
variation of fault resistance. 

Method RL = 1 Ω RL= 10 Ω RL = 50 Ω 

TLBO [1] 15s / 7s 

HS [1] 45s / / 

ASO 90s 90s 90s 

ML (spline) 2s 2s 2s 

In the case of other methods, as the fault resistance rises, it 

gradually impacts the detection accuracy, leading to an increase 

in error from 0.02 % to 0.1 %. However, this increment in error 

remains quite insignificant. Table 4 compares the four 

algorithms above in terms of calculation time, confirming that 

the ML algorithm is the most efficient for estimating fault 

locations as it requires less time for calculation. 

Table 5 illustrates the comparison among the four 

algorithms mentioned in terms of average percentage error, 

revealing that the accuracy and percentage error of the three 

methods are nearly equivalent. However, the ML method 

offers superior localization precision, resulting in an almost 

negligible error. 

Table 5 

 Comparison of the four algorithms based on the average percentage error 
for different fault resistance values 

Method RL = 1 Ω RL = 10 Ω RL = 50 Ω 

TLBO [1] 0.024 % 0.024 % 0.0680 % 

HS [1] 0.0177 % 0.0145 % 0.0680 % 

ASO 0.0164 % 0.0216 % 0.7942 % 

ML (spline) 2.7821e-05 % 1.9963e-05% 2.20e-05 % 

5. CONCLUSION 

The paper discusses how the ASO and ML techniques equip 

power systems with reliable tools for fault detection and 

location. The first algorithm (ASO) relies on post-fault data to 

formulate an optimization problem, subsequently optimized 

using specialized techniques. The second method employs 

machine learning, drawing from historical fault data. The ASO 

algorithm demonstrates high accuracy but requires 

approximately 90 s to determine fault locations, whereas the 

ML algorithm achieves the best accuracy in a significantly 

shorter timeframe, around 0.2 s. Consequently, both methods 

exhibit minimal error in fault location even when faced with 

fault type or resistance alterations. Given the critical 

importance of swift fault resolution, The ML algorithm 

highlights the improvement in fault detection accuracy and 

reduced computational time compared to traditional methods. 

Recent applications of the ML algorithm across diverse 

electrical engineering domains highlight its success. The 

escalating adoption of both basic and modified versions of the 

ML algorithm attests to its potential and efficacy. It's 

noteworthy that building the necessary database for machine 

learning demands substantial time investment. Future efforts 

could explore using linear machine learning (LML) and the 

hybridization between ASO and machine learning 

metaheuristics. 

Received on 17 October 2023 

APPENDIX A 

The line parameters used in this study are provided in Table A1. 

Table A1 

Transmission line characteristics 

Parameters Positive sequence Zero sequence 

Resistance 27.5 mΩ/km 27.5 mΩ/km 

Inductance 1.00268 mH/km 3.26798 mH/km 

Capacity 0.013 μF/km 0.0085 μF/km 
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