
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. 
Vol. 680, 3, pp. 289–294, Bucarest, 2023 

1 University Politehnica of Bucharest, Faculty of Electrical Enginering 
2 INFINEON Technologies Romania & CO. SCS 
E-mails: claudiu.tufan@upb.ro, mihai.marin@upb.ro, marian.vasilescu@upb.ro radu.ciuceanu@upb.ro, mihai.maricaru@upb.ro 
  DOI: 10.59277/RRST-EE.2023.68.3.7 

DYNAMIC RELAXATION IN THE ITERATIVE METHODS FOR 
SOLVING NONLINEAR THREE-PHASE CIRCUITS 

CLAUDIU TUFAN 1, MIHAI EUGEN MARIN 1,2, GEORGE MARIAN VASILESCU 1,  
RADU MIRCEA CIUCEANU 1, MIHAI MARICARU 1 

Keywords: Nonlinear three-phase circuits; Picard-Banach iterative solution; Hănțilă method; Convergence acceleration; Dynamic 
overrelaxation. 

The Hănțilă method has proven its effectiveness in solving non-linear three-phase circuits. It is the only effective method for 
analyzing non-linear three-phase circuits containing machines with different sequence reactances. Since solving a system of 
equations is unnecessary, the computational effort is reduced, and a large number of harmonics can be considered. The 
convergence of the method is certain - demonstrated mathematically and allows the use of overrelaxation. To develop the method, 
we analyze the efficiency of computing a dynamic overrelaxation factor for accelerating the computational algorithm. 

1. INTRODUCTION 
Power electronics allow equipment development with better 

reliability and the efficient use of electrical energy [1–3]. A 
consequence of these technical solutions is the increase of non-
linear elements in the electrical networks that affect the power 
quality. The availability of efficient computation methods for 
solving non-linear three-phase circuits allows for modeling the 
distorted non-sinusoidal signal, estimating the losses, and 
evaluating the effectiveness of corrective measures. 

A method successfully used for solving electrotechnical 
problems with nonlinearities is the iterative solution based on 
the Picard Banach procedure – the Hănțilă method [4–11]. The 
method [4] was successfully developed for solving resistive 
circuits containing non-linear elements in a periodic regime, 
both in the frequency and time domains [12–15]. The use of the 
method is proved mathematically: the construction of a Picard-
Banach sequence associated with a contraction, therefore 
convergent and whose limit is the solution of the circuit. The 
method is based on an iterative procedure, it is not necessary to 
solve a system of equations (as in the case of the Harmonic 
Balance method), the calculation effort is reduced, and many 
harmonics can be considered, a fact practically impossible in the 
case of other methods. 

The method was also developed for solving three-phase 
circuits with non-linear elements and demonstrated its 
efficiency in all cases analyzed [16–20]. It also allowed the 
solution of three-phase circuits with non-linear elements, 
controlled switching (thyristors), or different sequence 
reactances. It presents several advantages [17,8]: the 
convergence is certain, the possibility of solving on a single 
phase, the easy highlight of the power transfer on harmonics, 
and the option to mitigate the Gibbs phenomenon. 

According to our knowledge, it is the only effective method 
for analyzing nonlinear three-phase circuits containing 
machines with different sequence reactances. The method can 
also be useful for studying the operation of equipment designed 
to mitigate harmonics weights in three-phase circuits. 

Non-linearity is treated by generating an iterative 
algorithm that is always convergent, the method allows 
convergence acceleration procedures [7,21,23]. They can be 
very useful when the contraction factors have values close to 
1 and when many harmonics are considered. 

One of the acceleration procedures analyzed in [19] is 
overrelaxation. Following the simulations performed in [19] 
using a fixed value for the overrelaxation factor, we noticed 
that in the case where the contraction factor of the algorithm 

is very close to 1, high value overrelaxation factors (30 and 
even more) can be used and the computation time decreases 
significantly (even to 30 %). In [7], the mathematical 
solution for the dynamic calculation of an optimal 
overrelaxation factor was proposed for the case of solving 
non-linear three-phase circuits. The case of the diode with 
piecewise linearized characteristics was analyzed 
theoretically without presenting numerical examples. The 
dynamic overrelaxation procedure has already been 
developed to solve field problems in nonlinear media using 
the Hănțilă method [7–11]. 

In the present paper, we analyze the dynamic 
overrelaxation proposed in [7] for a three-phase circuit with 
thyristors and compare its efficiency with the acceleration 
procedures previously analyzed in [19–20]. 

2. DYNAMIC OVERRELAXATION 
We briefly present the dynamic calculation method of an 

optimal overrelaxation factor from [7]. The Hănțilă method is 
a fixed-point method and treats nonlinearity by generating a 
convergent Picard-Banach sequence. The method consists in 
"linearizing" the circuit by replacing the non-linear elements 
with generators with controlled sources and internal 
resistances. The iterative correction is done for the time 
domain values of the non-linear sources. The value of the 
internal resistances of the generators is chosen to ensure the 
algorithm's convergence. The analysis of the linear circuit 
connected to the terminals of the nonlinear element is done in 
the frequency domain. The method has two variants: voltage 
correction of the controlled source or current correction [16–
20]. For simplicity, we analyze only the voltage correction, the 
other variant being its dual. Briefly, for voltage correction, the 
solution algorithm (detailed in [19]) is: 

e(n)→
F

E(n)→
h

U(n)→
F-1

u(n)→
g

e(n+1),  (1) 
where e is the value of the controlled source in the time 
domain (it can be initially 0), E  is the vector of the complex 
images of the Fourier harmonics of the controlled source, U 
is the voltage on the nonlinear element in the frequency 
domain, u the voltage on the nonlinear element in the time 
domain, F and F-1 represent the direct and inverse Fourier 
transforms, (n) the iteration number, h is the diagonal 
operator and performs in the frequency domain the 
connection with the rest of the circuit and is non-expansive, 
and g provides the correction with the nonlinear 
characteristic in the time domain and is contraction. 

The convergence of the iterative procedure is certain and 
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allows the use of overrelaxation [6, 7, 19, 20]: 
e'	(n)=e(n-1)+s%e(n)-e(n-1)'	with	s>1,  (2) 

where s is the overrelaxation factor. Using overrelaxation, 
the solution algorithm in (1) becomes (Fig.1): 

	e(n)
𝓼
→	e'	(n)→

F
E'	(n)→

h
U'(n)→

F-1
u'	(n)→

g
e'	(n+1). (3) 

The efficiency of using overrelaxation at iteration (n) is 
evaluated at iteration (n+1) by the distance ε'(n+1) (Fig. 1). 
 

 
Fig. 1 – The efficiency of using overrelaxation at iteration n is evaluated at 

iteration n+1. 

The use of overrelaxation is effective if: 
ε'(n+1)< ε(n+1),   (4) 

where 
ε(n)≝4e(n)-e(n-1)4=4∆e(n)4,		 										(5) 

with 

‖e‖=7〈e,e〉1
R
=7∫ e2

R
T
0 dt	 	 						(6) 

The procedure can be used with a fixed value for s as 
exemplified in [19], by testing relation (4) for a fixed value 
of s and applying overrelaxation when the inequality is 
satisfied. Or one can use an algorithm to find optimal values 
for s [7] for which ε'  has the minimum value at the next 
iteration. This provides the minimum distance 𝑒′(123) from 
the fixed point 𝑒∗ of the Picard Banach sequence, given that: 

∥ 𝑒∗ − 𝑒′(123) ∥⩽ 5
365

∥ 𝑒7(123) − 𝑒′(1) ∥  (7) 
where θ is the contraction factor of the algorithm. 

For this the minimum of the function 𝛤(𝑠)	must be 
calculated: 

Γ(s)=4e'(n+1)-e'(n)42    (8) 
Γ(s) can be written only as a function of s and vectors that 

do not depend on s, such as: e(n-1), ∆e(n), u(n), ∆u(n+1): 
 

Γ(s)=4g(F-1(h(F%e'(n)')))-e'(n)42    (9) 
   
Γ(s)=4g(u(n-1)+s∆u(n))-(e(n-1)+s∆e(n))42  (10) 

 
To find the minimum, we calculate the derivative of the 

function 𝛤(𝑠)	 and condition it to be zero: 
dΓ(s)
ds

=0      (11) 
 

KLdg(u)
du
M 	
u(n-1)+s∆u(n) ∆u

(n)-∆e(n)N ,					

%g(u(n-1)+s∆u(n))-(e(n-1)+s∆e(n))'O=0  (12) 
Equation (12) is solved numerically having in view that 

the function g is nonlinear. A simple solution is the Secant 
Method. To determine whether the obtained value is 
minimum and not maximum, we must check how the 

derivative changes sign around the value where the 
derivative cancels. Calculating a 2nd derivative to determine 
concavity can be difficult. 

Contrary to [19], the overrelaxation is applied in the time 
domain and not in the frequency domain. In the present 
situation, because the derivative Γ(s)	is easier to calculate in 
the time domain. Dynamic overrelaxation was calculated on 
harmonics to solve electromagnetic field problems in nonlinear 
media [5–11]. In the numerical examples, acceleration was 
applied only on the fundamental, a larger number of harmonics 
implying a very high computational effort. 

In the case of solving nonlinear circuits in the time domain 
and treating the nonlinearity with the Newton-Raphson 
Method, the convergence of the nonlinear procedure is 
controlled with under- or overrelaxation without rigorous 
arguments regarding the choice of relaxation factor values. 
On the other hand, for the Hănțilă method, the convergence 
is certain – mathematically demonstrated, and the method 
allows a rigorously substantiated computation of the optimal 
overrelaxation factor during the iterations. 

3. ILLUSTRATIVE EXAMPLE 
To be able to compare the efficiency of using dynamic 

overrelaxation with the other acceleration procedures 
presented in [19,20], we analyze the same circuit from [19,20], 
which is shown in Fig. 2, and keep the same computation 
values: three-phase sinusoidal generator with symmetrical 
sources with amplitude 325 V and frequency 50 Hz, 𝑅> = 1	Ω,
𝑅3 = 2	Ω, 𝑅? = 10	Ω, 𝐿> = 5 × 106@	H, 𝐿3 = 5 × 106A	H. 
For thyristors 𝑇𝑟 we use the piecewise linearized characteristic 
described in [18-21] with the blocking resistance 𝑅B =
1/𝐺B = 10@Ω, conduction resistance 𝑅C = 1/𝐺C = 0,05	Ω, 
𝑉D = 5𝑉 și 𝛼 = 𝜋/5	(𝑡E = 𝑇/10). We note that we have 
analyzed the use of dynamic overrelaxation in other circuits as 
well and the conclusions hold. 

 
Fig. 2 Three-phase circuit used for simulation. 

From [18], if we use voltage correction, the value of the 
function g(u) is:  

𝑒=g(u)	=

⎩
⎪
⎨

⎪
⎧u ,1- R

Rc
/+ RVf(Rb-Rc)

RbRc
	for	u	≥	Vf		&	t∈ 9

[tα,	tb),	tb	<	T
[0,tb)∪[tα,	T],		tα	>	tb	

	
u ,1- R

Rb
/ for	the	rest	of	period	T.

	

      (13) 
where 𝑡B	is the blocking time at which the condition 𝑢 < 𝑉D 
it is fulfilled for the first time after the moment of 
disappearance of the control signal from the gate. Inequality 
𝑡E 	> 	 𝑡B occurs when the conduction started in the previous 
period and is maintained in the current period until the 
condition 𝑢 < 𝑉D is met.  

For 𝑔(𝑢) to be a contraction, the computation resistance 
must be chosen with R	∈(0,2Rmin) [12–20]. In the present 
example Rmin	=	Rc. 

By derivation we get: 
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dg(u)
du d

 
u(n)+s∆u(n+1)

 = 

= I
(Rc-R)/Rc   for u(n)+s∆u(n+1) ≥ Vf & t∈ 9

[tα, tb), tb < T
[0,tb)∪[tα, T],  tα > tb 

(Rb-R)/Rb           for the rest of period T
			(14) 

provided for tb as u(n)+s∆u(n+1) < Vf. 
For computation, we used GNU Octave 6.2.0 [22]. The 

nonlinear eq. (12) and (14) were solved using the fzero 
command [23]. 

We keep the same computation parameters from [19, 20]: 
we truncate the Fourier series development at the 100th 
harmonic inclusive and divide the period T into several 
40,000 equidistant points. We used the calculation algorithm 
for 𝐹 și 𝐹63described in [18]. We stop the iterations when 
the relative distance (relative error) 𝜀(1)/4𝑒I4 drops below 
the value of 10-8. The computations were done on the same 
MacBook Pro laptop with the configuration: Processor 2.3 
GHz 8-Core Intel Core i9, Memory 16 GB 2667 MHz DDR4. 

Table 1 
Computations results using voltage correction for different values of 𝑅 =
𝑥	𝑅)*+ with dynamic overrelaxation computed every n iteration, fixed 

overrelaxation factor (s=30) and without over-relaxation (s=1) 

𝑥 

Every n 
iterations 

No. of 
iterations 

Computation 
time [s] 

𝜃 $
×
𝜃 %

 Max s min s Mean 
value 
of s 

 

0.
8 

0 9305 1664 

0.
99

98
5 

1 1  
0 2193 801 30 30  
5 2085 448.34 139.90 2.54 18.55 

10 1930 378.26 258.32 2.05 40.43 
25 2225 416.39 277.61 9.64 85.65 
70 2589 478.44 347.80 44.13 220.40 

1 

0 7748 1361 

0.
99

98
1 

1 1  
0 1767 675 30 30  
5 1700 361.74 149 1.81 19.14 

10 1711 342.71 178.48 2.35 37.55 
25 1905 359.18 218.83 10.77 83.15 
70 2310 421.83 288.57 66.54 221.31 

1.
5 

0 5534 961 

0.
99

97
1 

1 1  
0 1362 506 30 30  
5 1845 399.76 24.41 0.87 11.11 

10 1290 260.38 118.09 2.075 35.79 
25 1400 266.46 162.08 16.08 86.98 
70 2030 369.72 222.79 32.80 191.74 

1.
8 

0 4750 831 

0.
99

96
6 

1 1  
0 1943 730 30 30  
5 3976 862.08 3.36 0.58 1.97 

10 3310 662.60 17.62 0.62 5.41 
25 1276 243.31 143.80 14.16 81.19 
70 1960 360.83 187.19 39.52 158.63 

100 2396 439.26 188.57 61.19 162.64 

1.
9 

0 4539 801 

0.
99

96
4 

1 1  
0 2685 1014 30 30  
5 4140 890.26 2.51 0.54 1.48 

10 4170 823.06 11.33 0.54 1.89 
25 3500 655.45 40.7 0.93 8.75 
70 1889 355.93 176.78 46.3 153.28 

𝑅 &
'(

 

0 4535 809 

0.
99

96
2 

1 1  
5 3420 742 8.15 0.51 2.37 

10 4280 845.27 9.44 0.50 1.16 
25 3761 709 29.57 0.50 5 
70 3989 750 29 0.5 6.27 

Table 1 shows the number of iterations and the 
computation time for different values of the resistance R. The 
dynamic relaxation factor s was calculated and entered at 
each: 2, 5, 10, 25, 50, 70 or 100 iterations. θg,	θh are the 
contraction factors of functions g and h, respectively [19-10]. 
𝑅JKL=

2RminRmax
Rmin+Rmax

 and determines the smallest contraction 
factor for function g [19-20]. 

Analyzing the results, we noticed: by calculating a 
dynamic overrelaxation factor, the time and the number of 
iterations decrease considerably in the situation where the 
contraction factor of the algorithm is very close to 1. 

From Fig. 3a-3h, a large initial variation of the values for 
the optimal overrelaxation factor s is observed, after which it 
stabilizes and oscillates around a mean value. The average 
value and the maximum and minimum values obtained for s 
are shown in Table 1. 

A smaller value of the computation resistance (and 
implicitly a higher contraction factor) allows the use of 
higher overrelaxation factors (on average). The remark 
remains valid also for Table 2. 

Applying the dynamic overrelaxation factor less often 
allows higher values for the overrelaxation factor (on 
average). Therefore, the smallest number of iterations and the 
shortest computation time were not obtained when applying 
the dynamic overrelaxation factor every two iterations but 
when applying it less often. There is a time saving due to 
performing the additional computations less frequently, which 
overlaps with increasing the value of the overrelaxation factor 
and decreasing the number of iterations. 

In Table 1, it is observed for the cases of R= 1.8	𝑅MN1 , 
1,9 	ROPQ and RRST, that the use of the dynamic 
overrelaxation factor every 2 iterations do not bring any time 
savings and that the decrease of the number of iterations is 
quite low. For overrelaxation to be effective, the value of s 
must be at least greater than 2. Instead, applying a larger 
number of iterations determines the possibility of adopting 
higher value overrelaxation factors, and the number of 
iterations and computing time is reduced significantly. 

When the value of the resistance R increases and 
approaches the value 2	Rmin (from which the algorithm is no 
longer convergent) the phenomenon of "oscillating 
convergence" reported in [19] appears generated by the 
computation errors. In this case, the proposed procedure 
"tries to compensate" and underrelax and (with a small 
exception) manages to avoid the oscillating phenomenon.  

 

 
(a) 

 
(b) 



292 Dynamic relaxation methods for nonlinear three-phase circuits 4 
 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 3 – Evolution of the dynamic overrelaxation factor s for: 𝑅 = 𝑅)*+ with application every: (a) 2 iterations, 
(b) 10 iterations; 𝑅 = 1.8	𝑅)*+ with application every: (c) 2 iterations, (d) 25 iterations; 𝑅 = 𝑅,-. with application every: (e) 2 iterations and (f) detail 
regarding the evolution of the relative error 𝜀(+)/O𝑒/O; evolution of s for (g) Rs= (Rs+ Rmin) with application every 2 iterations and (h) Rs = Ropt

S with 
application every 2 iterations 

The values smaller than 1 for the relaxation factors can be 
noticed in Tabel 1 and the detail with the error graph in Fig. 
3f, in which the oscillating phenomenon disappears 
compared to [19]. Due to this oscillating phenomenon that 
causes underrelaxation, the minimum number of iterations 
and computation time was not obtained near the value 
R	=	Ropt as expected, but at R	=	1.8	𝑅min. 

Table 2 shows the number of iterations and the 
computation time for the case where the characteristic of the 
nonlinear element is modified by including the series resistor 
Rs according to the acceleration procedure presented in [20]. 
The results obtained for other acceleration procedures 
analyzed in [19,20] are also presented: change in the 
blocking resistance or of the number of sampling points. 

If the contraction factor of the algorithm is good enough, 
the savings of applying overrelaxation disappears. The 
number of iterations decreases slightly (sometimes even by 

zero), but the computation time increases due to the 
additional calculations. 

The other observations are maintained: a smaller value for 
the new computation resistance Rs allows higher values of 
the overrelaxation factor, applying overrelaxation less often 
allows using overrelaxation factors with higher value (on 
average), the large variations of s values in the beginning part 
and then the stabilization and oscillation around an average 
value, the appearance of underrelaxation when Rs 
approaches Ropts. 

We note that the application of dynamic relaxation has 
also been modeled for other nonlinear three-phase circuits, 
and the conclusions presented for the present example hold. 

It would be useful to calculate an optimum number of 
iterations to use dynamic overrelaxation. Until then, one can 
imagine an algorithm to find it, not very rigorous, based on 
calculating average values after "stabilizing" the algorithm 
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for a small number of iterations. 
By comparing the results in Tables 1 and 2, one can notice 

that for the present circuit case, the acceleration effect given 
by the computation of a dynamic overrelaxation factor is 
significantly lower than the acceleration solutions presented 
in [20] for modifying the nonlinear characteristic by 
including an existing series resistance or by extracting it 
from the equivalent impedance. If the extractable correction 
resistance value is large enough and the contraction factor 
drops significantly from 1, dynamic overrelaxation may 
become ineffective. However, if the nonlinear characteristic 
is "very hard" and the resistance that can be extracted from 
the circuit is of small value, the impact on the contraction 
factor is not so great as in the present case. The two 
acceleration procedures can be used together, the shortening 
of the computation time being significant. 

Table 2 
Computations results using Voltage correction and for different values 

of Rs=	𝑥(Rs+ Rmin) with dynamic overrelaxation computed every n 
iterations, fixed overrelaxation factor (s=2 / 1.5) and without over-relaxation 
(s=1)and other acceleration procedures 

 

𝑥  

Every n iterations 

No. of 
iterations 

Time 
[s] 𝜃 $

×
𝜃 %

 

Max 
s 

min 
s 

Mean 
value 
of s 

 

0.
8 

0 119 23.69 

0.
98

23
7 

1 1  

0 105 40.64 2 2  

0 / with  𝑅)	 
modification 115 22.93 1 1  

0 / modification of 
no. of points 140 20.21 1 1  

5 112 26.31 1.88 1.22 1.73 

10 109 25.18 1.85 1.44 1.75 

25 117 24.12 1.85 1.63 1.79 

1 

0 94 19.10 

0.
97

54
8 

1 1  

0 88 34.57 2 2  

0 / with Rb 
modification 91 18.77 1 1  

0 / modification of 
no. of points 99 16.42 1 1  

5 90 21.7 1.67 1.18 1.57 

10 93 20.67 1.66 1.37 1.60 

25 93 20.13 1.66 1.54 1.63 

1.
5 

0 61 13.47 

0.
95

45
3 

1 1  

0 58 23.59 1.5 1.5  

0 / with Rb 
modification 59 12.99 1 1  

0 / modification of 
no. of points 77 11.98 1 1  

5 60 15.56 1.41 1.04 1.35 

10 61 14.57 1.41 1.25 1.37 

25 61 13.88 1.40 1.38 1.39 

1.
8 

0 51 11.60 

0.
93

97
6 

1 1  

0 50 21.28 1.5 1.5  

0 / with Rb 
modification 48 11.01 1 1  

0 / modification of 
no. of points 56 10.10 1 1  

5 50 13.11 1.32 0.76 1.22 

10 50 12.21 1.32 0.73 1.2 

25 50 11.7 1.31 1.3 1.31 

0 48 11.13 1 1  

1.
9 

0 47 19.76 

0.
93

45
2 

1.2 1.2  

0 / with Rb 
modification 46 10.65 1 1  

0 /modification of 
no. of points 61 9.74 1 1  

5 48 12.48 1.28 0.71 1.12 

10 48 11.89 1.29 0.62 1.12 

25 48 11.11   0.9 

 R
op
tS

 

0 48 11.12 

0.
92

92
5 

1 1  

0 /modification of 
no. of points 63 9.58 1 1  

5 46 12.15 1.06 0.66 0.94 

10 46 11.34 1.11 0.58 0.87 

25 46 10.84   0.58 

4. CONCLUSIONS 
If there is a need to consider a large number of harmonics, 

the volume and computation time increase significantly. 
Depending on the values and characteristics of the circuit 
elements, situations may arise where the convergence is slow 
due to the contraction factor of the algorithm with values 
very close to 1. Acceleration procedures, including 
overrelaxation, are very useful in such cases. If the 
contraction factor of the algorithm θ is good enough 
(significantly smaller than 1), the economy of applying 
overrelaxation disappears: the number of iterations decreases 
very little, and the computation time increases due to 
additional computations. 

The main observations resulting from the use of a dynamic 
relaxation factor: a smaller value for the computation 
resistance R allows higher values of the overrelaxation factor, 
applying overrelaxation less often allows adopting 
overrelaxation factors of higher value (on average), the large 
variations of s values in the beginning part of the iterations and 
then stabilization and oscillation around an average value, the 
occurrence of under-relaxation if the calculation resistance 
value approaches Ropt		that compensate for the computation 
errors. We specify that the observations regarding the use of 
dynamic overrelaxation for the illustrative example in section 
3, not being mathematically demonstrated, are not necessarily 
valid for any other circuits. However, they suggest the validity 
of over-relaxation and the possibility of adopting some 
enforcement procedures. 

It would be very useful to be able to calculate an optimum 
number of iterations at which to use dynamic overrelaxation. 

It would be interesting to see if the conclusions and 
observations of this paper hold when solving field problems 
in nonlinear environments using the Hănțilă method. We 
propose to conduct such an analysis in a future article. 

To be able to compare the results obtained using different 
acceleration procedures, as well as their efficiency, we analyzed 
the same circuit from [19,20]. To keep the size of the article to a 
limited number of pages, the analysis of other three-phase 
nonlinear circuits using acceleration procedures (including 
resonances at different frequencies and high frequencies, with 
different sequence reactances, with several three-phase nonlinear 
elements, with linear and nonlinear unbalanced elements, with 
other kind of nonlinear characteristics,...) will be done in a series 
of future papers, including the observation of power transfer on 
harmonics and the computation of balance of powers, as well as 
validation of the results with measurements obtained in the 
laboratory for real nonlinear circuits. Acceleration procedures 
allow efficient analysis - reduced computational time and 
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volume and effective - high fidelity of calculated values through 
adopting many harmonics. 

We believe that an important direction of development of 
the Hănțilă method is increasing the computation speed and 
developing acceleration procedures for solving non-linear 
three-phase circuits and field problems in non-linear media. 

Received on 13 September 2023 
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