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This study uses magnetic resonance-based coupling theory to study the various placements of transmitter and receiver coils in 

wireless power transfer (WPT) systems. Various coil placements are examined to show where high efficiency can be achieved 

within the air gap. Basic characteristics such as self-inductance, mutual inductance, and coupling coefficient were calculated. 

Artificial neural networks (ANNs) in WPT are a powerful technique for predicting performance characteristics. Using ANNs 

provides an excellent method for streamlining the design process and reducing time-consuming calculations. To quickly determine 

and optimize coil design, this study compares recent research on ANN applications in WPT and the performance of different types 

of ANNs in WPT systems. An artificial neural network (ANN) was trained to predict the magnetic properties of a wireless power 

transfer (WPT) device. Appropriate cost functions have been implemented to train the ANN properly. It was shown that the 

trained ANN can effectively reproduce the data obtained by the finite element method (FEM). The results show an effective power 

transmission at different coil placements, with decreased efficiency observed after a certain distance. These data will help 

determine the proposed WPT system's air gap and angular limits.  

1. INTRODUCTION 

Wireless power transfer (WPT) is an innovative technology 

that enables energy transmission without physical 

connections, revolutionizing the charging and powering of 

electronic devices. Transferring energy using electromagnetic 

fields allows users to charge their devices independently of 

cables and offers practical solutions in many areas of daily life 

[1,2]. Initiated by Nikola Tesla, this quest has evolved into a 

multidisciplinary field, with wireless energy transfer serving 

as a central focus across multiple industries. Nikola Tesla's 

pioneering work has spurred research into wireless energy 

transfer, which can be broadly categorized into two main 

types: near-field and far-field technologies. The earliest efforts 

in wireless power transmission via electromagnetic radiation 

were pioneered by Nicola Tesla; however, these efforts 

experienced setbacks and were discontinued due to the 

withdrawal of sponsor support [3]. Sahai and Graham 

continued experimenting with laser-based power transfer but 

with low efficiency over long distances, primarily applicable 

in space scenarios. Laser radiation poses hazards despite its 

potential, with even low-power emissions capable of causing 

blindness and high-power emissions posing lethal risks due to 

thermal effects [4]. 

The efficiency of wireless power transfer (WPT) is 

significantly influenced by the positional and angular 

alignment of the transmitter and receiver coils [5–7]. When 

properly aligned, coils exhibit higher efficiency even at 

larger air gaps than misaligned coils. A study highlighted in 

reference [8] focused on estimating the coupling coefficient, 

emphasizing its critical role in determining efficiency.  

The key issue in wireless power transfer (WPT) is 

maintaining efficient energy transmission at increasing 

distances between the transmitter and receiver. As the 

distance increases, the efficiency of power transfer 

decreases. Researchers have investigated various ways to 

overcome this issue, including altering coil designs, 

combining numerous resonators, adjusting impedance 

matching, and using other approaches. However, due to the 

many factors impacting power transfer efficiency and the 

complex interplay between these parameters, determining 

the ideal values for individual parameters is difficult and 

time-consuming. As a result, a unique technique for 

parameter computing for WPT has been proposed, which 

incorporates artificial neural networks (ANN). This method 

aims to identify variables and establish improved 

correlations between parameters. Accordingly, this review 

delves into the diverse methodologies of ANN applied in 

WPT and proposes future implementations to augment the 

overall efficiency of WPT systems.  

Early implementations of ANN in WPT, as presented in 

[9,10], focused on current control for electric vehicle 

applications using BP. This implementation aimed to 

stabilize output current during dynamic wireless charging, 

which required accurate prediction of disturbances to 

maintain constant output current. Simulation using 

MATLAB/Simulink demonstrated the effectiveness of BP in 

stabilizing output current, although hardware validation was 

lacking [10]. Subsequent research efforts further explored 

the application of ANN in WPT. These studies proposed 

using BP to maximize power transfer through impedance-

matching techniques and adaptive filtering. BP algorithms 

have been simulated to identify optimal frequency matches 

between transmitter and receiver coils, and practical 

prototypes have been tested to evaluate power transfer 

efficiency under varying conditions of distance and 

misalignment [11]. In addition, PSO has been used to 

optimize the transfer efficiency and VA in inductively 

coupled WPT systems, and promising experimental and 

simulation results have been obtained [12–15]. 

The 2016 study addressed frequency splitting and 

misalignment challenges, focusing on inductively coupled 

WPT systems for short-range applications [16]. It used lumped 

impedance over different frequencies and transmission 

efficiency coefficients. Various ANN methods, such as GA 

and PSO, aided in optimization, reducing frequency splitting 

and accelerating parameter prediction. In dynamic charging 

scenarios, such as electric vehicles or biomedical devices, 

lateral misalignment (LTM) issues have been addressed by 

predicting and correcting coil misalignment using the BP 
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algorithm [17]. Predicting LTM dynamics could mitigate 

misalignment's adverse effects during dynamic charging 

scenarios. In addition, researchers explored coil design 

prediction and improvement through ANN algorithms, using 

PSO to optimize wire distribution and electromagnetic 

configurations for concentric circular coils [18]. multi-

objective hidden point PSO (MOHPSO) and multi-objective 

real number PSO (MORPSO) were applied to improve 

coupler efficiency and streamline design processes, supported 

by validated results from prototype evaluations. In addition, 

BP and PSO algorithms were used to fine-tune various 

parameters when exploring the integration of ANN in WPT 

converters and fault diagnosis [19,20]. Researchers used BP 

and PSO methods in their investigations to improve system 

performance and address issues related to battery degradation 

and lifetime concerns [21–23]. 

This study investigates the effectiveness of transformer 

configurations designed for wireless power transmission 

(WPT) at different locations and airgap spacings. Various 

parameters such as mutual inductance (M), coupling 

coefficient (k), and efficiency are calculated for different 

positions of the models and varying air gap lengths. The 

equivalent circuits and coils of the magnetic resonance 

coupling system are derived using several tools within the 

ANSYS software suite. A transient analysis of the WPT 

system is then performed considering different states of 

transmit and receive coil positions. Optimal estimates for k, 

M, and efficiency are then determined based on the distance 

using the ANN algorithm and machine learning (ML), 

followed by a comparative analysis of the results.  

2. MATERIAL AND METHOD 

This study section describes the fundamental operation of 

the analogous circuit utilized in the simulation. Figure 1 

shows the WPT system's fundamental equivalent circuit. 

This circuit will allow analytical calculations of input 

impedance, transmitted power, and efficiency. 

 

Fig. 1 – Circuit of WPT (wireless power transfer) system. 

In this similar circuit, 𝐼1 input current, 𝐼2  output current 

(receiver current), and 𝑉1  input voltage. The internal 

resistances within the transmitting and receiving systems 

encompass various components, including the resonant 

capacitors C transmit and receive, transmit coil inductance 

𝐿1, receive coil inductance 𝐿2, and counter inductance 𝐿m, 

alongside the load impedance 𝑍𝑙𝑜𝑎𝑑 . Equation (1) delineates 

the perimeter equation for the transmitter component, while 

Equation (2) illustrates the perimeter equation for the 

receiver component.  

𝑉1 = 𝐼1 (𝑅1 + jω𝐿1 +
1

jω𝐶1
) − 𝐼2(jω𝐿𝑚),           (1) 

0 = 𝐼2 (𝑅2+𝑍0 + jω𝐿2 +
1

jω𝐶2
) − 𝐼1(jω𝐿𝑚).       (2) 

Equations (1) and (2) are used to calculate the interaction 

of currents running between the receiver and transmitter 

coils, which is shown in Equation (3). 

𝐼2 = 𝐼1 (
jω𝐿𝑚

jω𝐿2+
1

jω𝐶2
+𝑅2+𝑍0

),                              (3) 

When eq. (1) is inserted into eq. (3), then the resulting 

voltage equation is divided by the input current, and the 

equivalent impedance, also known as the input impedance, 

is derived, as demonstrated in eq. (4). 

𝑍𝑒𝑞 = 𝑅1 +
1

jω𝐶1

+ jω𝐿1 + (ω𝐿𝑚)2 × 

(× jω𝐿2 +
1

jω𝐶2

+ + 𝑍0 + 𝑅2)
−1

.             (4) 

An alternative representation of the equivalent circuit 
shown in Fig. 1 is the equivalent circuit, as depicted in Fig. 2. 
The system's efficiency is expressed by eq. (5). 

 

Fig. 2 – Equivalent transfer system. 

 =
𝑃𝑜

𝑃𝑖
=

𝐼𝑜
2𝑍𝑜

𝐼𝑖
2𝑍𝑖

.                            (5) 

In this equation, the current 𝐼𝑜 represents the current 

through the receiver 𝐼2, the input current represents the 

current through the emitter 𝐼1, and the impedance 𝑍𝑜 

corresponds to the  𝑍𝑙𝑜𝑎𝑑  impedance. Expressing eq. (3) as 

the ratio of output current to input current yields, 

𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
=

jω𝐿𝑚

jω𝐿2+
1

jω𝐶2
+𝑅2+𝑍𝑜

 .                             (6) 

2.1. NEURAL NETWORK STRUCTURE  

AND TRAINING 

This section explores the generation of training data, the 

partitioning of data into training and testing sets, the creation 

of the ANN, the training methodology, and the development 

of cost functions. Each 48,384 geometries inputs nine unique 

independent variables into the ANN, resulting in 4,418 

variables describing magnetic field properties. Subsequently, 

49,013 geometries are simulated using a FEM solver, 

covering various combinations of independent variables and 

generating 4,418 dependent variables for each geometry. 

2.2. DATA GENERATION  

AND TRAINING/TESTING SETS 

Overfitting presents a challenge in artificial neural 

networks (ANNs), where the network may excel in fitting the 

data it was trained on but struggles to accurately predict new 

data points. This issue is particularly pronounced in larger 

ANNs, although they possess the capacity to approximate 

more complex functions. The dataset is typically divided into 

training and test sets to address the risk of overfitting or at 

least monitor its occurrence. While the ANN learns from the 

training set, it remains independent from the test set, 

ensuring that its performance on unseen data points reflects 

its generalization ability. In this study, every 13th geometry 
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was assigned to the testing set, ensuring comprehensive 

coverage of various variables such as air gaps and coil 

widths. Notably, the ANN underwent training solely with 

data from the training set, thereby avoiding any influence 

from the testing set. 

2.3. NEURAL NETWORK STRUCTURE 

The artificial neural network (ANN) structure comprises 

four distinct neural networks or branches, each employing 

identical nine input variables. PyTorch was utilized for 

constructing the ANN. Figure 3 displays the diverse layering 

used to simulate individual attributes. The Rectified Linear 

Unit (ReLu) activation function is mathematically defined on 

a vector x as follows: 

𝑅(𝑥) = {
𝑥, 𝑥 > 0,
0, 𝑥 ≤ 0.

                             (7) 

Notably, optimizing the ANN's performance involved 

training it to interpret the natural logarithm of the flux 

density rather than its direct value. This improvement is 

facilitated by the final layer of the stray field branch, which 

accommodates negative values, thereby circumventing the 

ReLu activation function. Furthermore, the inductance 

values specified in nanohenries should be interpreted in the 

context of a single turn. As both primary and secondary turns 

increase, the inductance values rise proportionally to the 

square of the turns.  

2.4. TRAINING ALGORITHM 

A gradient descent technique minimizes the cost function 

and trains the ANN, measuring the deviation between the 

training data and the ANN's predictions. Specifically, the 

Adam gradient descent method is applied to adjust the 

ANN's parameters to match the training data produced by 

FEM. Training typically involves processing batches of 

input data, with each full iteration through the training 

dataset referred to as an epoch, aiming to enhance training 

efficiency, 

𝑐𝐿 = 〈(𝐼𝑜 − 𝐼𝑇)𝑇(𝐼𝑜 − 𝐼𝑇)〉.                     (8) 

The symbol 𝑐𝐿 represents the cost associated with the 

inductance values. 𝐼𝑜 denotes the vector containing the 

inductance values predicted by ANN, while 𝐼𝑇 represents the 

vector of inductance values determined using FEM. The symbol 

⟨·⟩ denotes the average cost over the batch of geometries. When 

incorporating ferrite and copper magnetic field strengths into 

the ANN training process, relying solely on a basic mean 

squared error (MSE) cost function proves inadequate. The 

crucial aspect to consider is not solely the magnetic field 

intensity but energy dissipation. Ferrite losses commonly 

increase quadratically with the flux density, whereas copper 

proximity effect losses exhibit a linear relationship with 

magnetic flux density. Consequently, the minimized cost 

function 𝑐𝐹 ferrite during ANN training is given by: 

𝑐𝐹 = 〈(𝑓𝑜
2 − 𝑓𝑇

2)𝑇(𝑓𝑜
2 − 𝑓𝑇

2)〉.                         (9) 

In this equation, 𝑓𝑜 denotes the projected magnetic flux 

density values from the ANN, while 𝑓𝑇 represents the 

magnetic flux densities calculated using FEM. The symbol 

⟨·⟩ computes the average cost across every channel or image 

within a batch of geometries. In both the vehicle and ground 

configurations, each shape incorporates a channel that 

signifies both the real and imaginary aspects of the field. 

Equation (9) essentially outlines the cost function as the 

MSE of the squared magnetic flux density. Although 

equation (9) suggests that 𝑓𝑜 = ±𝑓𝑇 is an acceptable solution, 

the ReLu activation function ensures that 𝑓𝑜 ≥ 0. 

Consequently, there exists only one optimum solution. 

Similarly, the copper cost 𝑐𝐶𝑢 is expressed as: 

𝑐𝐶𝑢 = 〈(𝑐𝑜
2 − 𝑐𝑇

2)𝑇(𝑐𝑜
2 − 𝑐𝑇

2)〉.                       (10) 

In eq. (9) and (10), 𝑐𝑜 represents a vector of magnetic field 

strengths predicted by the ANN, while 𝑐𝑇 a vector of field 

strengths calculated by FEM. These equations demonstrate 

that the ANN is trained to reduce the MSE between the 

predicted and calculated energy losses. Evaluating relative 

accuracy provides an indirect approach to assessing 

precision. Variations in the number of Ampere-turns in the 

primary and secondary coils proportionally influence overall 

inaccuracies when magnetic field strength is depicted on a 

linear scale. Additionally, because some measurements of 

stray magnetic field intensity are notably high while others 

are relatively low, a relative error ensures fairness across all 

measurements. However, utilizing an MSE cost function on 

linear data may result in comparable linear errors for points 

with high and low magnetic field strength but significantly 

different relative errors. Since stray field strengths are 

logarithmically scaled, reducing the relative error in field 

strength amounts to minimizing the logarithmic mean square 

error. It's crucial to acknowledge that logarithmic values can 

occasionally be negative. Therefore, the ANN's final layer of 

the stray field branch cannot pass through the ReLu 

activation function. 

2.5. DESIGN OF RECTANGULAR WPT 

TRANSFORMER MODEL 

The study delves into the design aspect of rectangular 

WPT transformers employing the ANSYS-Maxwell tool. 

Figure 3 depicts rectangular coils, illustrating the 

configuration of the WPT transformers. Table 2 details the 

specific dimensions of the rectangular transformer model. 

Table 2 

Dimensions of rectangular WPT transformer 

Parameter Receiver coil Transmitter coil 

Turn Number 24 42 
Material thickness 2 mm 2 mm 

Coil dimension (395x395) mm (395x395) mm 

Core dimension (398x398) mm (398x398) mm 

This configuration utilizes the circular transformer 
model's identical primary and secondary winding counts. A 
magnetic resonance-coupled WPT system has been 
developed to accommodate aligned and unaligned 
conditions across air gap distances. The diverse 
arrangements of the transmitter and receiver coils, 
constructed using the ANSYS-Maxwell-3D tool, are 
illustrated in Fig. 3.  

 

Fig. 3 – Illustrates the aligned receiver and transmitter WPT models. 
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3. RESULT DISCUSSION 

3.1. ARTIFICIAL NEURAL NETWORK RESULTS 

This section examines the efficiency of the ANN across 

four primary functions. Unless explicitly stated otherwise, all 

performance metrics are assessed using the test rather than 

the training set. Notably, the ANN demonstrated remarkable 

accuracy in forecasting inductance values. The R2 value, a 

reliable gauge of the neural network's precision, consistently 

maintained a high level across all inductance measurements 

following 1250 training epochs. Figure 4 vividly portrays the 

proficiency of the ANN in acquiring knowledge of 

inductances, showcasing a notable convergence between the 

values calculated by FEM and those predicted by the ANN. 

 

Fig. 4 – Comparative analysis of ANN) and FEM values. 

Excitation scenarios involving two amperes-turns for both 

primary and secondary coils were employed to evaluate the 

predictive capability of the ANN)in forecasting stray 

magnetic fields. Subsequently, the magnetic fields generated 

by the ANN and those produced by FEM were compared for 

each geometry across various planes.  

Two criteria were utilized to validate the efficacy of the 

ANN: the R2 value, which correlates the MSE with the total 

energy, and the pass rate, indicating the proportion of the 

ANN-derived peak field strength falling within a specific 

margin of the FEM-derived peak field strength. Both criteria 

are illustrated in Fig. 5, emphasizing that they are solely 

based on field strength without undergoing logarithmic 

transformation. 

 

 

Fig. 5 – Metrics of the effectiveness of the artificial neural network in 
representing stray fields. 

When assessing the ANN performance in simulating 

ferrite magnetic fields, we computed an estimated energy 

loss for each geometry based on data generated by both FEM 

and ANN. It was postulated that ferrite energy losses 

correlate directly with the average of the squared flux 

density. After completing 1250 training epochs, the ANN 

achieved an R2 of 98.9 %. Similarly, we evaluated the 

accuracy of the ANN in simulating copper magnetic fields 

using a comparable method to that of ferrite magnetic fields, 

comparing the energy losses computed by the ANN with 

those determined by FEM. Following 1 250 epochs, the 

ANN attained an R2 value of 99.1 %. Figure 6 demonstrates 

the improvements in ANN performance observed during 

training for both copper and magnetic field parameters. 

 

 

Fig. 6 – Predictive capability enhancement for magnetic field losses 
throughout the training phase. 

3.2. FINITE ELEMENT METHOD ANALYSIS OF 

ALIGNED TRANSFORMERS 

The results obtained from the simulations for the models 

are displayed in Table 3. Changes in the distance of the air 

gap between the coils and the relocation of the models have 

a more significant effect on mutual inductance (M) than the 

coils' self-inductance. In scenarios where positions vary, 

reducing the air gap distance between the transmit and 

receive coils led to an elevation in both the mutual 

inductance (M) and the coupling coefficient (k). 

Table 3 

Analysis results of aligned coils of WPT transformer 

Distance Coupling 

coefficient 

(k) 

Transmitter 

coil inductance 

(𝑳𝒑[µ𝐇]) 

Receiver coil 

inductance 
(𝑳𝒔[µ𝐇]) 

Mutual 

inductance 

(M [µ𝐇]) 

Efficiency 

(%) 

0 cm 0.473 151.615 50.205 39.984  89.5 

5 cm 0.273 141.169  47.415 19.991  60.1 

10 cm 0.179 139.899 44.114 14.123  30.9 

 

The assessment outcomes concerning the aligned coils of 

the WPT transformer offer pivotal insights into the system's 

operational performance. With the coils precisely aligned, it 

becomes feasible to accurately gauge the efficacy of power 

transfer and the overall functionality of the transformer. 

These assessment findings serve as a cornerstone for further 

enhancements and refinements in WPT technology, 

facilitating the development of more effective and 

sustainable energy transfer solutions. An illustrative 

calculation was also conducted using the developed 

algorithm, showcasing the derived values for k, M, and 

efficiency in the case of aligned coils. Corresponding 

calculated values for alternative scenarios are delineated in 

Table 4 and Table 6. 

Table 4 

k, M and efficiency to aligned state 

  0 5 10 

k ANSYS-Maxwell 0.473 0.273 0.179 

ANN-Results 0.489 0.281 0.192 

M (𝛍𝐇) ANSYS-Maxwell 39.984 19.991 14.123 

ANN-Results 40.434 21.996 15.158 

Efficiency (%) ANSYS-Maxwell 89.5 60.1 30.9 

ANN-Results 90.3 61.8 31.9 



5 Yildirim Özüpak, Emrah Aslan 199 

 

This table compares the results obtained using two 

methods, ANSYS simulation and ANN, for various 

parameters such as inductance and efficiency. In the first 

section, the inductance values for each coil are presented. 

While slight differences exist between the results obtained 

from ANSYS and ANN, both methods provide similar 

inductance values overall. Moving to the second section, the 

efficiency percentages are provided. Once again, we observe 

similarities between the results obtained from ANSYS and 

ANN. This suggests that the ANN approach performs 

comparably to ANSYS simulation in accurately predicting 

both inductance and efficiency values. Overall, the table 

indicates that the ANN method yields results closely aligned 

with those obtained from ANSYS simulation, demonstrating 

its effectiveness in accurately estimating inductance and 

efficiency parameters for the coils. 

3.3. ANALYSIS OF UNALIGNED TRANSFORMERS 

This part of the research examines the unaligned 

configurations of different transformer models intended for 

the WPT system. The outcomes derived from these 

investigations are showcased in Tables 5 and 6. The 

misalignment occurs on the horizontal axis. The alignment is 

in cm in length and occurs gradually in 1 cm steps. 

Table 5 

Analysis results of unaligned coils of WPT transformer 

Distance 

Coupling 

coefficient 

(k) 

Transmitter 

coil 

inductance 

(𝑳𝒑[µ𝐇]) 

Receiver 

coil 

inductance 
(𝑳𝒔 [µ𝐇]) 

Mutual 

inductance 

(M[µ𝐇]) 

Efficiency 

(%) 

0 cm 0.551 149.056 48.941 39.007 88.1 

5 cm 0.401 149.854 48.932 34.021 59.1 

10 cm 0.325 150.952 48.456 27.155 31.2 

Table 6 

k, M, and efficiency to unaligned coils 

  0 5 10 

k ANSYS-Maxwell 0.551 0.401 0.325 

ANN-Results 0.556 0.408 0.341 

M ANSYS-Maxwell 39.007 34.021 27.155 

ANN-Results 40.013 34.246 27.504 

Efficiency (%) ANSYS-Maxwell 88.1 59.1 31.2 

ANN-Results 89.6 60.4 32.2 

 

Table 6 presents the calculated k values, M, and efficiency 

for unaligned coils obtained from ANSYS simulations and 

ANN results. For k, the values obtained from the ANN results 

are slightly higher across all cases than those from ANSYS 

simulations, indicating a slightly stronger coupling between 

the coils as predicted by the artificial neural network model. 

Similarly, for M, the values from the ANN results show a 

slight increase compared to ANSYS simulations. This 

suggests that the ANN model predicts a slightly higher mutual 

inductance between the coils in the unaligned configuration. 

Regarding efficiency, both ANSYS simulations and ANN 

results show an improvement in efficiency compared to the 

aligned coil configuration. The ANN results exhibit slightly 

higher efficiency values across all cases than ANSYS 

simulations, indicating that the artificial neural network model 

predicts slightly better efficiency in unaligned coil 

configurations. Overall, the table demonstrates the 

effectiveness of the artificial neural network approach in 

predicting coupling coefficient, mutual inductance, and 

efficiency for unaligned coil configurations, with results 

closely matching those obtained from ANSYS simulations. 

4. CONCLUSION 

Wireless power transfer (WPT) technology is rapidly 

advancing with the increasing demand for applications like 

mobile phones and electric cars. However, several 

challenges hinder its effectiveness, including coil design, 

impedance matching, resonant frequency, and alignment, all 

of which impact power transfer efficiency. Soft computing 

offers a solution by providing quick estimates and reliable 

accuracy for optimizing WPT variables and improving other 

parameters, ultimately maximizing power transfer 

efficiency. Artificial neural networks (ANN) for WPT 

optimization streamline complexity and identify optimal 

parameters for increased efficiency. Although still in its early 

stages, ANN's adaptability and predictability offer 

straightforward solutions to complex WPT problems. This 

study examines the impact of aligned and unaligned 

transformer models on WPT system efficiency. In unaligned 

scenarios, efficiency decreases significantly due to low 

mutual common inductance. However, effective wireless 

energy transfer is achievable up to certain air gap values in 

the unaligned scenario. Efficiency values are computed 

using ANSYS-Maxwell-3D, considering skin effect and 

proximity effect in transmitter and receiver coils. ANNs 

demonstrate high accuracy in approximating FEM data, even 

for untrained coil geometries. However, ANN performance 

is lowest in predicting stray fields, likely due to the wide 

range of magnetic field strength observations and required 

field measurements for each coil configuration. While a 

more robust ANN could potentially improve performance, 

its effectiveness is ultimately constrained by FEM data 

tolerance limits. 
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